A227607 Number of lattice paths from {10}^n to {0}^n using steps that decrement one component such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n.
1, 512, 29324405, 23076216957520, 93462550593036735356, 1174228543974568589770758656, 33976468300798036566458244068649205, 1869718376047919275097272876105318640045150, 171650174624972457949599385901886660192203614365332
Offset: 0
Keywords
Crossrefs
Row n=10 of A227578.
Programs
-
Maple
b:= proc(l) option remember; `if`(l[-1]=0, 1, add(add(b(subsop( i=j, l)), j=`if`(i=1, 0, l[i-1])..l[i]-1), i=1..nops(l))) end: a:= n-> `if`(n=0, 1, b([10$n])): seq(a(n), n=0..10);