cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227608 Denominators of A225825(n) difference table written by antidiagonals.

Original entry on oeis.org

1, 2, 2, 6, 3, 6, 2, 3, 3, 2, 30, 15, 15, 15, 30, 2, 15, 15, 15, 15, 2, 42, 21, 105, 105, 105, 21, 42, 2, 21, 21, 105, 105, 21, 21, 2, 30, 15, 105, 105, 105, 105, 105, 15, 30, 2, 15, 15, 105, 105, 105, 105, 15, 15, 2, 66, 33, 165, 165, 1155, 231, 1155, 165, 165, 33, 66, 2, 33, 33, 165, 165, 231, 231, 165, 165, 33, 33, 2
Offset: 0

Views

Author

Paul Curtz, Aug 10 2013

Keywords

Examples

			1,
-1/2,      1/2,
-1/6,     -2/3,     -1/6,
1/2,       1/3,     -1/3,     -1/2,
7/30,    11/15,    16/15,    11/15,     7/30,
-3/2,   -19/15,    -8/15,     8/15,    19/15,    3/2,
-31/42, -47/21, -368/105, -424/105, -368/105, -47/21, -31/42.
Row sums: 1, 0/2, -6/6, 0/6, 90/30, 0/30, -3570/210, 0/210, 32550/210,... .
Are the denominators A034386(n+1)?
Reduced row sums: 1, 0, -1, 0, 3, 0, -17, 0, 155,... = -A036968(n+1)? See A226158(n+2). First 100 terms checked by Jean-François Alcover.
		

Crossrefs

Programs

  • Mathematica
    max = 12; b[0] = 1; b[n_] := Numerator[ BernoulliB[n, 1/2] - (n+1)*EulerE[n, 0]]; t = Table[b[n], {n, 0, max}] / Table[ Sum[ Boole[ PrimeQ[d+1]]/(d+1), {d, Divisors[n]}] // Denominator, {n, 0, max}]; dt = Table[ Differences[t, n], {n, 0, max}]; Table[ dt[[n-k+1, k]] // Denominator, {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 12 2013 *)

Extensions

More terms from Jean-François Alcover, Aug 12 2013