cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227612 Table read by antidiagonals: Number of ways m/n can be expressed as the sum of three distinct unit fractions, i.e., m/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z and read by antidiagonals.

Original entry on oeis.org

1, 0, 6, 0, 1, 15, 0, 1, 5, 22, 0, 0, 1, 6, 30, 0, 0, 1, 3, 9, 45, 0, 0, 1, 1, 7, 15, 36, 0, 0, 0, 2, 2, 6, 14, 62, 0, 0, 0, 1, 1, 5, 6, 22, 69, 0, 0, 0, 1, 1, 1, 5, 16, 21, 84, 0, 0, 0, 0, 1, 1, 3, 6, 15, 30, 56, 0, 0, 0, 0, 1, 4, 1, 5, 4, 15, 22, 142, 0, 0, 0, 0, 0, 1, 1, 3, 9, 9, 13, 45, 53
Offset: 1

Views

Author

Robert G. Wilson v, Jul 17 2013

Keywords

Comments

The main diagonal is 1, 1, 1, 1, 1, 1, 1, ..., ; i.e., 1 = 1/2 + 1/3 + 1/6.

Examples

			  m\n| 1  2   3   4   5   6   7   8   9  10  11   12  13   14   15
  ---+------------------------------------------------------------
   1 | 1  6  15  22  30  45  36  62  69  84  56  142  53  124  178  A227610
   2 | 0  1   5   6   9  15  14  22  21  30  22   45  17   36   72  A227611
   3 | 0  1   1   3   7   6   6  16  15  15  13   22   8   27   30  A075785
   4 | 0  0   1   1   2   5   5   6   4   9   7   15   4   14   33  A073101
   5 | 0  0   1   2   1   1   3   5   9   6   3   12   5   18   15  A075248
   6 | 0  0   0   1   1   1   1   3   5   7   5    6   1    6    9  n/a
   7 | 0  0   0   1   1   4   1   2   2   2   2    9   6    6    7  n/a
   8 | 0  0   0   0   1   1   1   1   1   2   0    5   3    5   15  n/a
   9 | 0  0   0   0   0   1   1   3   1   1   0    3   1    2    7  n/a
  10 | 0  0   0   0   0   1   0   2   2   1   0    1   1    3    5  n/a
.
Antidiagonals are {1}, {0, 6}, {0, 1, 15}, {0, 1, 5, 22}, {0, 0, 1, 6, 30}, {0, 0, 1, 3, 9, 45}, ...
		

Crossrefs

Cf. A002966, A073546, A227610 (1/n), A227611 (2/n), A075785 (3/n), A073101 (4/n), A075248 (5/n).

Programs

  • Mathematica
    f[m_, n_] := Length@ Solve[m/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Table[ f[n, m - n + 1], {m, 12}, {n, m, 1, -1}]