cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227620 Logarithmic derivative of A005169, the number of fountains of n coins.

Original entry on oeis.org

1, 1, 4, 5, 11, 22, 36, 69, 121, 221, 386, 686, 1210, 2122, 3734, 6517, 11408, 19903, 34714, 60485, 105312, 183272, 318758, 554262, 963361, 1674076, 2908426, 5052066, 8774386, 15237482, 26458718, 45939797, 79759442, 138468656, 240382216, 417289619, 724369536, 1257396992
Offset: 1

Views

Author

Paul D. Hanna, Jul 17 2013

Keywords

Examples

			L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 11*x^5/5 + 22*x^6/6 +...
such L(x) = log(P(x)) - log(Q(x)) where
P(x) = 1 - x^2 - x^3 - x^4 - x^5 + x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + 2*x^13 + 2*x^14 + x^15 + x^16 - x^18 +...+ A224898(n)*x^n +...
Q(x) = 1 - x - x^2 - x^3 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + x^11 + x^12 - 2*x^15 - x^16 - 3*x^17 - 3*x^18 +...+ A039924(n)*x^n +...
log(P(x)) = -2*x^2/2 - 3*x^3/3 - 6*x^4/4 - 10*x^5/5 - 11*x^6/6 - 21*x^7/7 - 22*x^8/8 - 39*x^9/9 - 42*x^10/10 +...
log(Q(x)) = -x - 3*x^2/2 - 7*x^3/3 - 11*x^4/4 - 21*x^5/5 - 33*x^6/6 - 57*x^7/7 - 91*x^8/8 - 160*x^9/9 - 263*x^10/10 +...
		

Crossrefs

Programs

  • PARI
    /* As the log of a continued fraction: */
    {a(n)=local(A=x, CF=1+x); for(k=0, n, CF=1/(1-x^(n-k+1)*CF+x*O(x^n)); A=log(CF)); n*polcoeff(A, n)}
    for(n=1,40,print1(a(n),", "))
    
  • PARI
    /* By the Rogers-Ramanujan continued fraction identity: */
    {a(n)=local(A=x, P=1+x, Q=1);
    P=sum(m=0, sqrtint(n), (-1)^m*x^(m*(m+1))/prod(k=1, m, 1-x^k));
    Q=sum(m=0, sqrtint(n), (-1)^m*x^(m^2)/prod(k=1, m, 1-x^k));
    A=log(P/(Q+x*O(x^n))); n*polcoeff(A, n)}
    for(n=1,40,print1(a(n),", "))

Formula

L.g.f.: log( 1/(1-x/(1-x^2/(1-x^3/(1-x^4/(1-x^5/(1-...)))))) ), the logarithm of a continued fraction.
L.g.f.: log( P(x) / Q(x) ) where
P(x) = Sum_{n>=0} (-1)^n* x^(n*(n+1)) / Product_{k=1..n} (1-x^k),
Q(x) = Sum_{n>=0} (-1)^n* x^(n^2) / Product_{k=1..n} (1-x^k),
due to the Rogers-Ramanujan continued fraction identity.