A227622 Primes p of the form m^2 + 27.
31, 43, 127, 223, 283, 811, 1051, 1471, 1627, 2143, 2731, 3163, 3391, 4651, 5503, 6427, 8863, 9631, 16411, 16927, 18523, 23131, 23743, 27583, 28927, 29611, 33151, 37663, 42463, 43291, 44971, 45823, 56671, 65563, 70783, 78427, 80683, 84127, 87643, 106303, 110251, 122527, 123931, 131071
Offset: 1
Examples
For p=31, using x=3 as primitive root, the set of residues {1,2,3,4,6,8,12,15,16,17,23,24,27,29,30} is a difference set. 2 a cube mod p: 4^3 == 2 (mod 31); 20^3 == 2 (mod 43); 8^3 == 2 (mod 127); 68^3 == 2 (mod 223). - _Peter Bala_, Nov 19 2021
References
- K. Ireland and M. Rosen, A classical introduction to modern number theory, vol. 84, Graduate Texts in Mathematics. Springer-Verlag. [Prop. 8.3.2, p. 96]
- Thomas Storer, Cyclotomy and difference sets. Markham, Chicago, 1967, pages 73-76.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Peter Bala, Notes on the period polynomial for the cubic Gaussian periods
- Keith Conrad, Galois groups of cubics and quartics (not in characteristic 2)
- Marshall Hall Jr., A survey of difference sets, Proc. Amer. Math. Soc. 7 (1956) 975-986.
- Ki-Ichiro Hashimoto and Akinari Hoshi, Families of cyclic polynomials obtained from geometric generalization of Gaussian period relations, Math. Comp., Vol. 74, No. 251, 2005, pp. 1519-1530
- D. H. Lehmer and Emma Lehmer, The Lehmer Project, Math. of Comp., Vol. 61, No. 203, 1993, pp. 313-317.
Programs
-
Mathematica
Select[Table[m^2+27,{m,0,100}],PrimeQ]
-
PARI
for(n=0,10^3,my(p=n^2+27);if(isprime(p),print1(p,", "))); \\ Joerg Arndt, Jul 18 2013
Comments