A227631 Array t(n,k): row n consists of the positive integers m for which the least splitter of H(m) and H(m+1) is n, where H denotes harmonic number.
1, 3, 2, 10, 6, 5, 30, 18, 7, 4, 82, 50, 15, 8, 16, 226, 136, 21, 13, 20, 9, 615, 372, 42, 23, 24, 12, 14, 1673, 1014, 59, 38, 36, 25, 19, 44, 4549, 2758, 115, 64, 45, 35, 22, 56, 17, 12366, 7500, 161, 106, 55, 70, 26, 73, 33, 11, 33616, 20389, 315, 175, 67
Offset: 1
Examples
Northwest corner of the array: 1 ... 3 ... 10 ... 30 ... 82 ... 226 2 ... 6 ... 18 ... 50 ... 136 .. 372 5 ... 7 ... 15 ... 21 ... 42 ... 59 4 ... 8 ... 13 ... 23 ... 38 ... 64 16 .. 20 .. 24 ... 36 ... 45 ... 55 9 ... 12 .. 25 ... 35 ... 70 ... 97 14 .. 19 .. 22 ... 26 ... 34 ... 40 t(2,1) = 2 matches 1 + 1/2 <= 3/2 < 1 + 1/2 + 1/3; similarly, t(2,2) = 6 matches H(6) <= 5/2 < H(7) and t(2,3) = 18 matches H(18) <= 7/2 < H(19).
Links
- Matthew House, Table of n, a(n) for n = 1..10011 (rows 1..141).
Programs
-
Mathematica
h[n_] := h[n] = HarmonicNumber[n]; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; t = Table[r[h[n], h[n + 1]], {n, 1, 40000}]; d = Denominator[t]; u[n_] := Flatten[Position[d, n]]; TableForm[Table[u[n], {n, 1, 50}]] (* A227631 *) r1[n_, k_] := u[n][[k]]; z = 11; v = Flatten[Table[r1[n - k + 1, k], {n, z}, {k, n, 1, -1}]] (* A227631 sequence *) (* Peter J. C. Moses, Jul 15 2013 *)
Comments