cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A227776 a(n) = 6*n^2 + 1.

Original entry on oeis.org

1, 7, 25, 55, 97, 151, 217, 295, 385, 487, 601, 727, 865, 1015, 1177, 1351, 1537, 1735, 1945, 2167, 2401, 2647, 2905, 3175, 3457, 3751, 4057, 4375, 4705, 5047, 5401, 5767, 6145, 6535, 6937, 7351, 7777, 8215, 8665, 9127, 9601, 10087, 10585, 11095, 11617, 12151
Offset: 0

Views

Author

Clark Kimberling, Jul 30 2013

Keywords

Comments

Least splitter is defined for x < y at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Conjecture: a(n) is the least splitter of s(n) and s(n+1), where s(n) = n*sin(1/n).

Examples

			The first eight least splitting rationals for {n*sin(1/n), n >=1 } are these fractions: 6/7, 24/25, 54/55, 96/97, 150/151, 216/217, 294/295, 384/385.
		

Crossrefs

Programs

  • Mathematica
    z = 40; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; s[n_] := s[n] = n*Sin[1/n]; t = Table[r[s[n], s[n + 1]], {n, 1, z}] (* least splitting rationals *); fd = Denominator[t] (* Peter J. C. Moses, Jul 15 2013 *)
    Array[6 #^2 + 1 &, 45] (* Michael De Vlieger, Nov 08 2017 *)
    LinearRecurrence[{3,-3,1},{7,25,55},50] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    a(n)=6*n^2+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: (1 + 4*x + 7*x^2)/(1 - x)^3.
a(n) = A287326(2n, n). - Kolosov Petro, Nov 06 2017
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(6))*coth(Pi/sqrt(6)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(6))*csch(Pi/sqrt(6)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(6))*sinh(Pi/sqrt(3)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(6))*csch(Pi/sqrt(6)).(End)
From Leo Tavares, Nov 20 2021: (Start)
a(n) = A003154(n+1) - A008458(n). See Hexagonal Star Rays illustration.
a(n) = A003215(n) + A028896(n-1).
a(n) = A054554(n+1) + A046092(n).
a(n) = A080855(n) + A045943(n).
a(n) = A172043(n) + A002378(n).
a(n) = A033581(n) + 1. (End)
E.g.f.: exp(x)*(1 + 6*x + 6*x^2). - Stefano Spezia, Sep 14 2024

Extensions

a(0) = 1 prepended by Robert P. P. McKone, Oct 09 2023

A227629 Least splitter of the harmonic numbers H(n) and H(n+1).

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 3, 4, 6, 1, 10, 6, 4, 7, 3, 5, 9, 2, 7, 5, 3, 7, 4, 5, 6, 7, 10, 14, 27, 1, 18, 12, 9, 7, 6, 5, 9, 4, 11, 7, 13, 3, 11, 8, 5, 7, 9, 13, 25, 2, 15, 9, 7, 12, 5, 8, 11, 17, 3, 13, 10, 7, 15, 4, 13, 9, 5, 11, 17, 6, 7, 15, 8, 9, 11, 12, 14, 17
Offset: 1

Views

Author

Clark Kimberling, Jul 18 2013

Keywords

Comments

See A227631 for the definition of least splitter.

Examples

			The first few splitting rationals are 1/1, 3/2, 2/1, 9/4, 7/3, 5/2, 8/3, 11/4, 17/6, 3/1, 31/10, 19/6; e.g. 9/4 splits H(4) and H(5), as indicated by H(4) = 1 + 1/2 + 1/3 + 1/4 =  2.083...  < 2.25 < 2.283... = H(5) and the chain H(1) <= 1/1 < H(2) < 3/2 < H(3) < 2/1 < H(4) < 9/4 < ...
		

Crossrefs

Programs

  • Mathematica
    h[n_] := h[n] = HarmonicNumber[n]; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; t = Table[r[h[n], h[n + 1]], {n, 1, 120}];
    Denominator[t] (* A227629 *)
    Numerator[t]   (* A227630 *)  (* Peter J. C. Moses, Jul 15 2013 *)

A227630 Numerator of the least splitting rational of the harmonic numbers H(n) and H(n+1).

Original entry on oeis.org

1, 3, 2, 9, 7, 5, 8, 11, 17, 3, 31, 19, 13, 23, 10, 17, 31, 7, 25, 18, 11, 26, 15, 19, 23, 27, 39, 55, 107, 4, 73, 49, 37, 29, 25, 21, 38, 17, 47, 30, 56, 13, 48, 35, 22, 31, 40, 58, 112, 9, 68, 41, 32, 55, 23, 37, 51, 79, 14, 61, 47, 33, 71, 19, 62, 43, 24
Offset: 1

Views

Author

Clark Kimberling, Jul 18 2013

Keywords

Comments

See A227631 for the definition of least splitting rational.

Examples

			The first few splitting rationals are 1/1, 3/2, 2/1, 9/4, 7/3, 5/2, 8/3, 11/4, 17/6, 3/1, 31/10, 19/6; e.g. 9/4 splits H(4) and H(5), as indicated by H(4) = 1 + 1/2 + 1/3 + 1/4 =  2.083...  < 2.25 < 2.283... = H(5) and the chain H(1) <= 1/1 < H(2) < 3/2 < H(3) < 2/1 < H(4) < 9/4 < ...
		

Crossrefs

Programs

  • Mathematica
    h[n_] := h[n] = HarmonicNumber[n]; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; t = Table[r[h[n], h[n + 1]], {n, 1, 120}];
    Denominator[t] (* A227629 *)
    Numerator[t]   (* A227630 *)  (* Peter J. C. Moses, Jul 15 2013 *)

A227687 Least splitter of s(n) and s(n+1), where s(n) = 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 2, 1, 4, 2, 3, 1, 3, 2, 3, 1, 3, 2, 3, 1, 5, 3, 2, 3, 1, 5, 3, 2, 3, 5, 1, 4, 3, 2, 3, 5, 1, 4, 3, 2, 3, 4, 1, 6, 4, 3, 2, 3, 5, 1, 6, 4, 3, 2, 3, 4, 7, 1, 5, 3, 5, 2, 3, 4, 7, 1, 5, 4, 3, 2, 3, 4, 6, 1, 7, 4, 3, 5, 2, 3, 4, 6, 1, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Jul 21 2013

Keywords

Comments

Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.
The positions of 1 in this sequences (indicating those least splitting rationals of s(n) and s(n+1) which are integers) are given by A186351.

Examples

			The denominators (A227687) and numerators (A227688) can be read from these chains:
1 < 2 < 5/2 < 3 < 7/2 < 4 < 13/3 < 9/2 < 5 < 21/4 < 11/2 < 17/3 < 6 < . . .
s(1) <= 1 < s(2) < 2 < s(3) < 5/2 < s(4) < 3 < s(5) < 4 < s(6) < 13/3 <  . . .
		

Crossrefs

Programs

  • Mathematica
    r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d];
    s[n_] := s[n] = Sum[k^(-1/2), {k, 1, n}]; t = Table[r[s[n], s[n + 1]], {n, 1, 15}] (*fractions*)
    fd = Denominator[t] (*A227687*)
    fn = Numerator[t]   (*A227688*)

A227688 Numerator of least splitting rational of s(n) and s(n+1), where s(n) = 1/sqrt(1) + 1/sqrt(2) + ... + 1/sqrt(n).

Original entry on oeis.org

1, 2, 5, 3, 7, 4, 13, 9, 5, 21, 11, 17, 6, 19, 13, 20, 7, 22, 15, 23, 8, 41, 25, 17, 26, 9, 46, 28, 19, 29, 49, 10, 41, 31, 21, 32, 54, 11, 45, 34, 23, 35, 47, 12, 73, 49, 37, 25, 38, 64, 13, 79, 53, 40, 27, 41, 55, 97, 14, 71, 43, 72, 29, 44, 59, 104, 15
Offset: 1

Views

Author

Clark Kimberling, Jul 21 2013

Keywords

Comments

Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.

Examples

			The denominators (A227687) and numerators (A227688) can be read from these chains:
1 < 2 < 5/2 < 3 < 7/2 < 4 < 13/3 < 9/2 < 5 < 21/4 < 11/2 < 17/3 < 6 < . . . ;
s(1) <= 1 < s(2) < 2 < s(3) < 5/2 < s(4) < 3 < s(5) < 4 < s(6) < 13/3 <  . . .
		

Crossrefs

Programs

  • Mathematica
    r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d];
    s[n_] := s[n] = Sum[k^(-1/2), {k, 1, n}]; t = Table[r[s[n], s[n + 1]], {n, 1, 15}] (*fractions*)
    fd = Denominator[t] (*A227687*)
    fn = Numerator[t]   (*A227688*)

A225594 Least splitter of s(n) and s(n+1), where s(n) = (1 + n)^(1/n).

Original entry on oeis.org

1, 3, 5, 9, 2, 11, 9, 7, 12, 5, 18, 13, 8, 19, 11, 25, 14, 17, 23, 26, 35, 44, 65, 116, 3, 115, 73, 55, 46, 37, 34, 31, 28, 25, 47, 22, 41, 19, 73, 35, 51, 83, 16, 61, 45, 29, 42, 55, 68, 107, 13, 101, 75, 49, 85, 36, 59, 105, 23, 79, 56, 33, 109, 76, 43, 53
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2013

Keywords

Comments

Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Since s(n) -> e, the least splitting rationals -> e.

Examples

			The first 15 splitting rationals are 2/1, 7/3, 12/5, 22/9, 5/2, 28/11, 23/9, 18/7, 31/12, 13/5, 47/18, 34/13, 21/8, 50/19, 29/11.
		

Crossrefs

Cf. A227631.

Programs

  • Mathematica
    z = 100; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; s[n_] := s[n] = (1 + 1/n)^n; t = Table[r[s[n], s[n + 1]], {n, 1, z}]; fd = Denominator[t] (* Peter J. C. Moses, Jul 15 2013 *)

A227634 Least splitter of log(n) and log(n+1).

Original entry on oeis.org

1, 1, 3, 2, 3, 5, 1, 6, 4, 3, 5, 2, 5, 3, 4, 5, 6, 10, 18, 1, 11, 8, 6, 5, 4, 7, 10, 3, 5, 7, 9, 15, 2, 11, 7, 5, 8, 14, 3, 10, 7, 4, 9, 5, 11, 6, 7, 8, 10, 12, 15, 21, 34, 1, 40, 24, 17, 13, 11, 10, 8, 7, 13, 6, 11, 5, 14, 9, 17, 4, 11, 7, 10, 13, 22, 3, 17
Offset: 1

Views

Author

Clark Kimberling, Jul 18 2013

Keywords

Comments

Essentially the same as A183163. - R. J. Mathar, Jul 27 2013
Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.

Examples

			The splitting rationals of consecutive numbers log(1), log(2), ... are 0, 1, 4/3, 3/2, 5/3, 9/5, 2, 13/6, 9/4, 7/3, 12/5, 5/2, 13/5; the denominators form A227634, and the numerators, A227684.  Chain:
log(1) <= 0 < log(2) < 1 < log(3) < 4/3 < log(4) < 3/2 < log(5) < 5/3 < ...
		

Crossrefs

Cf. A227631.

Programs

  • Mathematica
    h[n_] := h[n] = HarmonicNumber[n]; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; t = Table[r[Log[n], Log[n + 1]], {n, 1, 120}] (*fractions*)
    Denominator[t] (* A227634 *)
    Numerator[t]   (* A227684 *)

A227684 Numerator of least splitting rational of log(n) and log(n+1).

Original entry on oeis.org

0, 1, 4, 3, 5, 9, 2, 13, 9, 7, 12, 5, 13, 8, 11, 14, 17, 29, 53, 3, 34, 25, 19, 16, 13, 23, 33, 10, 17, 24, 31, 52, 7, 39, 25, 18, 29, 51, 11, 37, 26, 15, 34, 19, 42, 23, 27, 31, 39, 47, 59, 83, 135, 4, 161, 97, 69, 53, 45, 41, 33, 29, 54, 25, 46, 21, 59, 38
Offset: 1

Views

Author

Clark Kimberling, Jul 19 2013

Keywords

Comments

Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.

Examples

			The splitting rationals of consecutive numbers log(1), log(2), ... are 0, 1, 4/3, 3/2, 5/3, 9/5, 2, 13/6, 9/4, 7/3, 12/5, 5/2, 13/5; the denominators form A227634, and the numerators, A227684.  Chain:
log(1) <= 0 < log(2) < 1 < log(3) < 4/3 < log(4) < 3/2 < log(5) < 5/3 < ...
		

Crossrefs

Programs

  • Mathematica
    h[n_] := h[n] = HarmonicNumber[n]; r[x_, y_] := Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; t = Table[r[Log[n], Log[n + 1]], {n, 1, 120}] (*fractions*)
    Denominator[t] (* A227634 *)
    Numerator[t]  (* A227684 *)

A227685 Least splitter of s(n) and s(n+1), where s(n) = 1 + 1/2^2 + ... + 1/n^2.

Original entry on oeis.org

1, 3, 5, 7, 15, 2, 19, 13, 11, 9, 16, 23, 7, 19, 12, 29, 17, 22, 32, 57, 5, 88, 53, 38, 28, 51, 23, 59, 18, 31, 44, 70, 13, 60, 47, 34, 76, 21, 50, 29, 66, 37, 45, 53, 69, 85, 117, 189, 8, 243, 147, 107, 83, 67, 59, 51, 94, 43, 78, 35, 97, 62, 89, 27, 154
Offset: 1

Views

Author

Clark Kimberling, Jul 19 2013

Keywords

Comments

Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.

Examples

			The denominators (A227685) and numerators (A227686) can be read from this chain: s(1) <= 1 < s(2) < 4/3 < s(3) < 7/5 < s(4) < 10/7 < s(5) < 22/15 < ...
		

Crossrefs

Programs

  • Mathematica
    Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; s[n_] := s[n] = Sum[k^(-2), {k, 1, n}]
    t = Table[r[s[n], s[n + 1]], {n, 1, 150}] (*fractions*)
    Denominator[t] (*A227685*)
    Numerator[t]   (*A227686*)

A227686 Numerator of least splitting rational of s(n) and s(n+1), where s(n) = 1 + 1/2^2 + ... + 1/n^2.

Original entry on oeis.org

1, 4, 7, 10, 22, 3, 29, 20, 17, 14, 25, 36, 11, 30, 19, 46, 27, 35, 51, 91, 8, 141, 85, 61, 45, 82, 37, 95, 29, 50, 71, 113, 21, 97, 76, 55, 123, 34, 81, 47, 107, 60, 73, 86, 112, 138, 190, 307, 13, 395, 239, 174, 135, 109, 96, 83, 153, 70, 127, 57, 158, 101
Offset: 1

Views

Author

Clark Kimberling, Jul 19 2013

Keywords

Comments

Suppose that x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y.

Examples

			The denominators (A227685) and numerators (A227686) can be read from this chain:  s(1) <= 1 < s(2) < 4/3 < s(3) < 7/5 < s(4) < 10/7 < s(5) < 22/15 < ...
		

Crossrefs

Programs

  • Mathematica
    Module[{c, d}, d = NestWhile[#1 + 1 &, 1, ! (c = Ceiling[#1 x - 1]) < Ceiling[#1 y] - 1 &]; (c + 1)/d]; s[n_] := s[n] = Sum[k^(-2), {k, 1, n}]
    t = Table[r[s[n], s[n + 1]], {n, 1, 150}] (*fractions)
    fd = Denominator[t] (*A227685*)
    fn = Numerator[t]   (*A227686*)
Showing 1-10 of 15 results. Next