cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227652 Perfect powers which are the product of distinct factorials.

Original entry on oeis.org

1, 144, 518400, 2073600, 406425600, 3657830400, 14631321600, 58525286400, 526727577600, 2106910310400, 13168189440000, 52672757760000, 210691031040000, 842764124160000, 1769804660736000, 1896219279360000, 7584877117440000, 30339508469760000
Offset: 1

Views

Author

Giovanni Resta, Jul 19 2013

Keywords

Comments

The first occurrences of nontrivial 2nd, 3rd,..., 6th powers are 3!*4!, 4!*7!*8!*9!, 2!*3!*4!*6!*7! * 13!*14!*15!*16!, 27!*26!*25!*24!*23! * 16!*15!*14!*12!*11!*9!*8!*3!*2! and 78!*77!*76!*75!*74!*73! * 37!*35!*34!*33!*32!*31! * 21!*20!*19!*14!*13! * 12!*9!*8!*7!*3!.

Examples

			14631321600 = 120960^2 = 8! * 9!.
		

Crossrefs

Cf. A051761.

Programs

  • Mathematica
    seqUpto[ub_] := Block[{ric, L={1}}, ric[m_, fr_] := Block[{mm, k = fr}, If[GCD @@ (Last /@ FactorInteger[m]) > 1, AppendTo[L, m]]; While[(mm = m*k!) <= ub, ric[mm, ++k]]]; ric[1, 2]; Union@L]; seqUpto[10^20] (* Giovanni Resta, Jul 19 2013 *)