A227667 Number of lattice paths from {n}^5 to {0}^5 using steps that decrement one component by 1 such that for each point (p_1,p_2,...,p_5) we have abs(p_{i}-p_{i+1}) <= 1.
1, 120, 29392, 7453320, 1897242448, 482913033152, 122911984813568, 31283451053916800, 7962224756951452544, 2026535155335964884480, 515791104488454210243072, 131278484324109833244067840, 33412829924638979294019463168, 8504190228674549912505288509440
Offset: 0
Examples
a(1) = 5! = 120.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..200
Programs
-
Maple
a:= n-> coeff(series((173568*x^8 -3773248*x^7 +10330944*x^6 -719888*x^5 +1468896*x^4 -35208*x^3 -3608*x^2 +170*x-1) / (-98304*x^9 +4024832*x^8 -36900032*x^7 +37771968*x^6 -3950640*x^5 +5084576*x^4 -23648*x^3 -9016*x^2 +290*x-1), x, n+1), x, n): seq(a(n), n=0..20);
Formula
G.f.: (173568*x^8 -3773248*x^7 +10330944*x^6 -719888*x^5 +1468896*x^4 -35208*x^3 -3608*x^2 +170*x-1) / (-98304*x^9 +4024832*x^8 -36900032*x^7 +37771968*x^6 -3950640*x^5 +5084576*x^4 -23648*x^3 -9016*x^2 +290*x-1).