cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A228115 First differences of A227693.

Original entry on oeis.org

3, 21, 143, 1061, 8366, 68932, 585881, 5094722, 45074595, 404185377, 3663479699, 33498077106, 308548877876, 2859703657128, 26646019345842, 249434445759050, 2344494354096166, 22116172789221197, 209301155352811190, 1986521422431963549, 18904049485198437478, 180323870540071281301, 1723847795281971132487, 16512536418951055856540, 158463448213030472998711
Offset: 1

Views

Author

Vladimir Pletser, Aug 10 2013

Keywords

Comments

This sequence gives a good approximation of the number of primes with n digits (A006879); see (A228116).

Examples

			For n =1, A227693(1)- A227693(0) =4-1=3, where A227693(1)= round((F[3]( 1.016825…))^2)=4 with F[3](x) = x^2+1 and A227693(0)= round(F[1](x)) =1 with F[1](x)=1
		

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n)= A227693(n)- A227693(n-1)

A227694 Difference between pi(10^n) and nearest integer to (F[2n+1](S(n)))^2 where pi(10^n) = number of primes <= 10^n (A006880), F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see A227693).

Original entry on oeis.org

0, 0, 0, 0, -3, -29, 171, 2325, 13809, 33409, -443988, -8663889, -99916944, -927360109, -7318034084, -47993181878, -223530657736, 810207694, 16558446000251, 257071298610935, 2657469557986545, 18804132783879606, 24113768300809752, -2232929440358147845, -54971510676262602742
Offset: 1

Views

Author

Vladimir Pletser, Jul 19 2013

Keywords

Comments

A227693 provides exactly the values of pi(10^n) for n = 1 to 4 and yields an average relative difference in absolute value, average(abs(A227694(n))/pi(10^n)) = 1.58269...*10^-4 for 1 <= n <= 25.
A227693 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n) as the sequence of integers nearest to R(10^n) (A057794), which yields 0.01219...; (2) the functions of the logarithmic integral Li(x) = Integral_{t=0..x} dt/log(t), whether as the sequence of integers nearest to (Li(10^n) - Li(3)) (A223166), which yields 0.0074969... (see A223167), or as Gauss's approximation to pi(10^n), i.e., the sequence of integers nearest to (Li(10^n) - Li(2)) (A190802), which yields 0.020116... (see A106313), or as the sequence of integer nearest to Li(10^n) (A057752), which yields 0.032486....

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A227693(n).

A228111 Integer nearest to (S(n)*F(4n)(S(n))), where F(4n)(x) are Fibonacci polynomials of multiple of 4 indices (4n) and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments).

Original entry on oeis.org

4, 21, 143, 1063, 8385, 68929, 584467, 5074924, 44885325, 402777151, 3656032622, 33492393634, 309106153431, 2870123507479, 26783122426197, 250971797533095, 2359952229466124, 22256979400698116, 210440626023838163, 1994088284872617955, 18931694933036811169
Offset: 1

Views

Author

Vladimir Pletser, Aug 10 2013

Keywords

Comments

Coefficients are A=16103485019141/2900449771918928, B=5262046568827901/29305205016290, C(0)=296261685121849/265642652464758, C(1)=38398556529727/750568780742436, C(2)=0, C(3)=-11594434149768/8254020049890781.
This sequence gives a good approximation of the number of primes with n digits (A006879); see (A228112).
As the squares of odd-indexed Fibonacci numbers F(2n+1)(1) (see A227693) are equal or close to the first values of pi(10^n) (A006880), and as F(4n)(1)=(F(2n+1)(1))^2- (F(2n-1)(1))^2, it is legitimate to ask whether the first values of the differences pi(10^n)- pi(10^(n-1)) (A006879) are also close or equal to multiple of 4 index Fibonacci numbers F(4n)(1); e.g., for n=2, F(8)(1)=21. However, when using Fibonacci polynomials, the exact relation is xF(4n)(x)=(F(2n+1)(x))^2- (F(2n-1)(x))^2.
To obtain this sequence, one switches to the product of x and multiple of 4 index Fibonacci polynomials F(4n)(x), and one obtains the sequence a(n) by computing x as a function of n such that (xF(4n)(x)) fit the values of pi(10^n)- pi(10^(n-1)) for 1 <= n <= 25, with pi(1)=0.

Examples

			For n=1, xF(4)(x) = x^2*(x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.11173... to obtain a(1) = round((1.11173...)*F(4)(1.11173...)) = 4.
For n=2, xF(8)(x) = x^2*(x^2+2)*(x^4+4*x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.99998788... to obtain a(2) = round((0.99998788...)*F(8)(0.99998788...)) = 21.
		

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Programs

  • Maple
    with(combinat):A:=16103485019141/2900449771918928: B:=5262046568827901/29305205016290: C(0):=296261685121849/265642652464758: C(1):=38398556529727/750568780742436: C(2):=0: C(3):=-11594434149768/8254020049890781: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(c(n)*fibonacci(4*n, c(n))), n=1..25);

Formula

a(n) = round(S(n)*F(4n)(S(n))), where S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i).

A228063 Integer nearest to F[4n](S(n)), where F[4n](x) are Fibonacci polynomials and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments).

Original entry on oeis.org

4, 21, 143, 1063, 8371, 68785, 583436, 5069633, 44876757, 403025174, 3660702622, 33550877248, 309726969451, 2876065468123, 26835315229835, 251389798269317, 2362887262236150, 22272676889496853, 210455460654786509, 1992806263723883464
Offset: 1

Views

Author

Vladimir Pletser, Aug 06 2013

Keywords

Comments

Coefficients are A=6.74100517717340111e-03, B=147.60482223254, C(0)=1.112640536670862472, C(1)=5.2280866355335360415e-02, C(2)=0, C(3)=-1.5569578292261924e-03.
This sequence gives a good approximation of the number of primes with n digits (A006879); see A228064.
As the squares of odd-indexed Fibonacci numbers F[2n+1](1) (see A227693) are equal or close to the first values of pi(10^n) (A006880), and as F[4n](1)=(F[2n+1](1))^2- (F[2n-1](1))^2, it is legitimate to ask whether the first values of the differences pi(10^n)- pi(10^(n-1)) (A006879) are also close or equal to multiple of 4 index Fibonacci numbers F[4n](1); e.g., for n=2, F[8](1)=21.
To obtain this sequence, one switches to multiple of 4 index Fibonacci polynomials F[4n](x), one obtains the sequence a(n) by computing x as a function of n such that F[4n](x) fit the values of pi(10^n)- pi(10^(n-1)) for 1 <= n <= 25, with pi(1)=0.

Examples

			For n =1, F[4](x) = x^3+2x; replace x by Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.179499… to obtain a(1)= round(F[4]( 1.179499...))=4. For n=2, F[8](x) = x^7+6x^5+10x^3+4x; replace x by Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.999861... to obtain a(2)= round(F[8]( 0.999861…))=21
		

References

  • Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Programs

  • Maple
    with(combinat):A:=6.74100517717340111e-03: B:=147.60482223254: C(0):=1.112640536670862472: C(1):=5.2280866355335360415e-02: C(2):=0: C(3):=-1.5569578292261924e-03: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(fibonacci(4*n, c(n))), n=1..25);

Formula

a(n) = round(F[4n](Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i)) ).

A229256 Difference between PrimePi(10^n) and its approximation by A229255(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 10, 223, 144, -9998, -58280, 348134, 9517942, 92182430, 404027415, -2717447318, -79612186200, -983858494247, -7964818545554, -31776540093807, 289145607666924, 8243854930562789, 108476952917770938, 885519807642948390, 715407405727600672, -147909423143942345447
Offset: 1

Views

Author

Vladimir Pletser, Sep 17 2013

Keywords

Comments

A229255 provides exact values of pi(10^n) for n=1 to 5 and yields an average relative difference in absolute value of Average(Abs(A229256(n))/pi(10^n)) = 2.05820...*10^-4 for 1<=n<=25.
A229255 provides a better approximation to the distribution of pi(10^n) than: (1) the Riemann function R(10^n) as the sequence of integers nearest to R(10^n), Average(Abs(A057794 (n))/pi(10^n)) =1.219...*10^-2; (2) the functions of the logarithmic integral Li(x) whether as the sequence of integer nearest to (Li(10^n)-Li(3)) (A223166) (Average(Abs(A223167(n))/pi(10^n))= 7.4969...*10^-3), or as Gauss’ approximation to pi(10^n), i.e. the sequence of integer nearest to (Li(10^n)-Li(2)) (A190802) (Average(Abs(A106313(n))/pi(10^n)) =2.0116...*10^-2), or as the sequence of integer nearest to Li(10^n) (A057752) (Average(Abs(A057752 (n))/pi(10^n)) =3.2486...*10^-2).

References

  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.

Crossrefs

Formula

a(n) = A006880(n) - A229255(n).
Showing 1-5 of 5 results.