Original entry on oeis.org
3, 21, 143, 1061, 8366, 68932, 585881, 5094722, 45074595, 404185377, 3663479699, 33498077106, 308548877876, 2859703657128, 26646019345842, 249434445759050, 2344494354096166, 22116172789221197, 209301155352811190, 1986521422431963549, 18904049485198437478, 180323870540071281301, 1723847795281971132487, 16512536418951055856540, 158463448213030472998711
Offset: 1
For n =1, A227693(1)- A227693(0) =4-1=3, where A227693(1)= round((F[3]( 1.016825…))^2)=4 with F[3](x) = x^2+1 and A227693(0)= round(F[1](x)) =1 with F[1](x)=1
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A227694
Difference between pi(10^n) and nearest integer to (F[2n+1](S(n)))^2 where pi(10^n) = number of primes <= 10^n (A006880), F[2n+1](x) are Fibonacci polynomials of odd indices [2n+1] and S(n) = Sum_{i=0..2} (C(i)*(log(log(A*(B+n^2))))^(2i)) (see A227693).
Original entry on oeis.org
0, 0, 0, 0, -3, -29, 171, 2325, 13809, 33409, -443988, -8663889, -99916944, -927360109, -7318034084, -47993181878, -223530657736, 810207694, 16558446000251, 257071298610935, 2657469557986545, 18804132783879606, 24113768300809752, -2232929440358147845, -54971510676262602742
Offset: 1
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A228111
Integer nearest to (S(n)*F(4n)(S(n))), where F(4n)(x) are Fibonacci polynomials of multiple of 4 indices (4n) and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments).
Original entry on oeis.org
4, 21, 143, 1063, 8385, 68929, 584467, 5074924, 44885325, 402777151, 3656032622, 33492393634, 309106153431, 2870123507479, 26783122426197, 250971797533095, 2359952229466124, 22256979400698116, 210440626023838163, 1994088284872617955, 18931694933036811169
Offset: 1
For n=1, xF(4)(x) = x^2*(x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.11173... to obtain a(1) = round((1.11173...)*F(4)(1.11173...)) = 4.
For n=2, xF(8)(x) = x^2*(x^2+2)*(x^4+4*x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.99998788... to obtain a(2) = round((0.99998788...)*F(8)(0.99998788...)) = 21.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
-
with(combinat):A:=16103485019141/2900449771918928: B:=5262046568827901/29305205016290: C(0):=296261685121849/265642652464758: C(1):=38398556529727/750568780742436: C(2):=0: C(3):=-11594434149768/8254020049890781: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(c(n)*fibonacci(4*n, c(n))), n=1..25);
A228063
Integer nearest to F[4n](S(n)), where F[4n](x) are Fibonacci polynomials and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments).
Original entry on oeis.org
4, 21, 143, 1063, 8371, 68785, 583436, 5069633, 44876757, 403025174, 3660702622, 33550877248, 309726969451, 2876065468123, 26835315229835, 251389798269317, 2362887262236150, 22272676889496853, 210455460654786509, 1992806263723883464
Offset: 1
For n =1, F[4](x) = x^3+2x; replace x by Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.179499… to obtain a(1)= round(F[4]( 1.179499...))=4. For n=2, F[8](x) = x^7+6x^5+10x^3+4x; replace x by Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.999861... to obtain a(2)= round(F[8]( 0.999861…))=21
- Jonathan Borwein, David H. Bailey, Mathematics by Experiment, A. K. Peters, 2004, p. 65 (Table 2.2).
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
-
with(combinat):A:=6.74100517717340111e-03: B:=147.60482223254: C(0):=1.112640536670862472: C(1):=5.2280866355335360415e-02: C(2):=0: C(3):=-1.5569578292261924e-03: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(fibonacci(4*n, c(n))), n=1..25);
A229256
Difference between PrimePi(10^n) and its approximation by A229255(n).
Original entry on oeis.org
0, 0, 0, 0, 0, 10, 223, 144, -9998, -58280, 348134, 9517942, 92182430, 404027415, -2717447318, -79612186200, -983858494247, -7964818545554, -31776540093807, 289145607666924, 8243854930562789, 108476952917770938, 885519807642948390, 715407405727600672, -147909423143942345447
Offset: 1
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
Cf.
A006880,
A229255,
A225137,
A215663,
A057793,
A057794,
A223166,
A223167,
A190802,
A106313,
A057752,
A227693,
A052435.
Showing 1-5 of 5 results.
Comments