cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227771 Antiharmonic numbers that are not squares.

Original entry on oeis.org

20, 50, 117, 180, 200, 242, 325, 450, 468, 500, 578, 605, 650, 800, 968, 980, 1025, 1058, 1280, 1300, 1445, 1476, 1620, 1682, 1700, 1800, 1872, 2178, 2312, 2340, 2420, 2450, 2600, 2645, 2925, 3200, 3362, 3380, 3757, 3872, 4050, 4100, 4205, 4232, 4352, 4418, 4500, 4693, 5200
Offset: 1

Views

Author

Jonathan Sondow, Aug 02 2013

Keywords

Comments

Given prime factorization m = product (p_i^e_i), the antiharmonic (or contraharmonic) mean of the divisors of m is sigma_2(m)/sigma_1(m) = product (p_i^(e_i+1)+1)/(p_i+1). If this is an integer, then m is called antiharmonic.
All squares are trivially antiharmonic, since (p^(2*e+1)+1)/(p+1) = p^(2*e) - p^(2*e-1) + p^(2*e-2) - ... + 1 is an integer. Sequence gives the nontrivial antiharmonic numbers.
The antiharmonic means of their divisors are A227986.
Sequence is infinite, since if n is in the sequence and gcd(n, k) = 1 then nk^2 is also in the sequence. - Charles R Greathouse IV, Aug 02 2013
Removing such terms nk^2 leaves the primitive antiharmonic numbers A228023. - Jonathan Sondow, Aug 04 2013

Examples

			sigma_2(20)/sigma_1(20) = (1^2 + 2^2 + 4^2 + 5^2 + 10^2 + 20^2)/(1 + 2 + 4 + 5 + 10 + 20) = 546/42 = 13 is an integer, 20 is not a square, and no smaller number has these properties, so a(1) = 20.
		

References

  • R. Guy, Unsolved Problems in Number Theory, B2 (see harmonic number).

Crossrefs

Programs

  • PARI
    is(n)=if(issquare(n),return(0)); my(f=factor(n)); denominator(prod(i=1,#f~,(f[i,1]^(f[i,2]+1)+1)/(f[i,1]+1)))==1 \\ Charles R Greathouse IV, Aug 02 2013

Formula

A001157(a(n))/A000203(a(n)) = A227986(n).