cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A227986 Antiharmonic mean of the divisors of A227771(n) (the n-th antiharmonic number that is not a square).

Original entry on oeis.org

13, 35, 85, 91, 119, 185, 255, 245, 255, 313, 455, 481, 425, 455, 629, 559, 841, 845, 741, 765, 1183, 841, 793, 1355, 1015, 833, 935, 1295, 1547, 1105, 1443, 1505, 1445, 2197, 1785, 1799, 2735, 2041, 3315, 2405, 2135, 2523, 3523, 2873, 2755, 3605, 2191, 4165
Offset: 1

Views

Author

Jonathan Sondow, Aug 02 2013

Keywords

Comments

For comments, references, example, and crossrefs, see A227771.

Crossrefs

Formula

a(n) = sigma_2(A227771(n))/sigma_1(A227771(n)).

A020487 Antiharmonic numbers: numbers k such that sigma_1(k) divides sigma_2(k).

Original entry on oeis.org

1, 4, 9, 16, 20, 25, 36, 49, 50, 64, 81, 100, 117, 121, 144, 169, 180, 196, 200, 225, 242, 256, 289, 324, 325, 361, 400, 441, 450, 468, 484, 500, 529, 576, 578, 605, 625, 650, 676, 729, 784, 800, 841, 900, 961, 968, 980, 1024, 1025, 1058, 1089, 1156, 1225, 1280, 1296
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that antiharmonic mean of divisors of k is an integer. Antiharmonic mean of divisors of number m = Product (p_i^e_i) is A001157(m)/A000203(m) = Product ((p_i^(e_i+1)+1)/(p_i+1)). So a(n) = k, for some n, if A001157(k)/A000203(k) is an integer. - Jaroslav Krizek, Mar 09 2009
Squares are antiharmonic, since (p^(2*e+1)+1)/(p+1) = p^(2*e) - p^(2*e-1) + p^(2*e-2) - ... + 1 is an integer. The nonsquare antiharmonic numbers are A227771. They include the primitive antiharmonic numbers A228023, except for its first term. - Jonathan Sondow, Aug 02 2013
Sequence is infinite, see A227771. - Charles R Greathouse IV, Sep 02 2013
The term "antiharmonic" is also known as "contraharmonic". - Pahikkala Jussi, Dec 11 2013

Examples

			a(3) = 9 = 3^2; antiharmonic mean of divisors of 9 is (3^(2+1) + 1)/(3 + 1) = 7; 7 is an integer. - _Jaroslav Krizek_, Mar 09 2009
		

Crossrefs

Programs

  • Haskell
    a020487 n = a020487_list !! (n-1)
    a020487_list = filter (\x -> a001157 x `mod` a000203 x == 0) [1..]
    -- Reinhard Zumkeller, Jan 21 2014
    
  • Magma
    [n: n in [1..1300] | IsZero(DivisorSigma(2,n) mod DivisorSigma(1,n))]; // Bruno Berselli, Apr 10 2013
    
  • Mathematica
    Select[Range[2000], Divisible[DivisorSigma[2, #], DivisorSigma[1, #]]&] (* Jean-François Alcover, Nov 14 2017 *)
  • PARI
    is(n)=sigma(n,2)%sigma(n)==0 \\ Charles R Greathouse IV, Jul 02 2013
    
  • Python
    from sympy import divisor_sigma
    def ok(n): return divisor_sigma(n, 2)%divisor_sigma(n, 1) == 0
    print([k for k in range(1, 1300) if ok(k)]) # Michael S. Branicky, Feb 25 2024
    
  • Python
    # faster for producing initial segment of sequence
    from math import prod
    from sympy import factorint
    def ok(n):
        f = factorint(n)
        sigma1 = prod((p**(  e+1)-1)//(p-1)    for p, e in f.items())
        sigma2 = prod((p**(2*e+2)-1)//(p**2-1) for p, e in f.items())
        return sigma2%sigma1 ==  0
    print([k for k in range(1, 1300) if ok(k)]) # Michael S. Branicky, Feb 25 2024

A228023 Primitive antiharmonic numbers.

Original entry on oeis.org

1, 20, 50, 117, 200, 242, 325, 500, 578, 605, 650, 800, 968, 1025, 1058, 1280, 1445, 1476, 1682, 1700, 2312, 2340, 2600, 2645, 3200, 3362, 3757, 3872, 4205, 4232, 4352, 4418, 4693, 5618, 6728, 6962, 7514, 8228, 8405, 8833, 9248, 9425, 9472, 10082, 10400, 11045, 11849, 12493
Offset: 1

Views

Author

Keywords

Comments

Antiharmonic numbers (A020487) which are not the product of an antiharmonic number and a relatively prime square > 1. Apart from the first term, a subsequence of A227771 (antiharmonic numbers that are not squares).
Is this sequence infinite? It seems that 4n^2 <= a(n) <= 8n^2 for n > 1, and that a(n) ~ 6n^2 as n -> infinity--see A228036 for motivation.
The antiharmonic mean of the divisors of a(n) is A228024(n).

Examples

			200 = 2^3 * 5^2 is antiharmonic (since sigma_2(200)/sigma(200) = 119 is an integer) but 2^3 is not antiharmonic, so 200 is in this sequence.
180 = 2^2 * 3^2 * 5 is antiharmonic but 180/3^2 = 20 is also antiharmonic, so 180 is not in the sequence.
		

Crossrefs

Programs

  • PARI
    isf(f)=denominator(prod(i=1,#f~,(f[i,1]^(f[i,2]+1)+1)/(f[i,1]+1)))==1
    nosmaller(f,startAt)=for(i=startAt,#f~,if(f[i,2]%2==0&&f[i,2],return(nosmaller(f,i+1)&&!(f[i,2]=0)&&!isf(f)&&nosmaller(f,i+1))));1
    is(n)=my(f);isf(f=factor(n))&&nosmaller(f,1)

A228036 (10^n)-th primitive antiharmonic number.

Original entry on oeis.org

1, 605, 51005, 5837732, 599407380, 60462121402
Offset: 0

Views

Author

Keywords

Comments

We conjecture that lim_{n->oo} a(n)/100^n = lim_{n->oo} A228023(n)/n^2 = 6. This is supported by the values a(n)/(10^n)^2 = 6.05, 5.10, 5.84, 5.99, 6.05 for n = 1..5, as well as by the values of A228023(n)/n^2.

Crossrefs

Formula

a(n) = A228023(10^n).

Extensions

a(5) from Charles R Greathouse IV, Sep 03 2013

A335389 Numbers k such that k and k+1 are both antiharmonic numbers (A020487).

Original entry on oeis.org

49, 324, 1024, 1444, 1681, 2600, 9800, 265225, 332928, 379456, 421200, 1940449, 4198400, 4293184, 4739328, 8346320, 11309768, 27050400, 65918161, 203694425, 384199200, 418488849, 546717924, 2239277041, 2687489280, 4866742025, 5783450400, 6933892900, 7725003664
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

Terms of this sequence k such that k and k+1 are both nonsquares (A227771) are 203694425, 4866742025, ...
Can two consecutive numbers be both primitive antiharmonic numbers (A228023)? Numbers k such that k and k+2 are both primitive antiharmonic numbers exist - the first two are 38246258 and 344321280.

Examples

			49 is a term since both 49 and 50 are antiharmonic: sigma_2(49)/sigma(49) = 43 and sigma_2(50)/sigma(50) = 35 are both integers.
		

Crossrefs

Programs

  • Mathematica
    antihQ[n_] := Divisible[DivisorSigma[2, n], DivisorSigma[1, n]]; seq = {}; q1 = antihQ[1];  Do[q2 = antihQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 2 * 10^6}]; seq

A374170 a(n) is the least nonsquare k such that sigma_n(k) divides sigma_2n(k).

Original entry on oeis.org

20, 20, 6050, 7203
Offset: 1

Views

Author

Mohammed Yaseen, Jun 30 2024

Keywords

Comments

a(1) = A227771(1); a(2) = A046871(5).
a(5) > 10^9 if it exists.
a(6) = 17328, a(7) = 50, a(13) = 761378.

Crossrefs

Programs

  • PARI
    a(n) = my(k=1, f=factor(k)); while (issquare(k) || (sigma(f, 2*n) % sigma(f, n)), f=factor(k++)); k; \\ Michel Marcus, Jun 30 2024
Showing 1-6 of 6 results.