cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 31 results. Next

A176799 a(n) = possible values of A176797(m) in increasing order, where A176797(m) = antiharmonic means of divisors of antiharmonic numbers A020487.

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 35, 43, 61, 63, 77, 85, 91, 111, 119, 129, 147, 157, 171, 183, 185, 231, 245, 255, 273, 301, 313, 333, 343, 425, 441, 455, 471, 473, 481, 507, 521, 547, 559, 629, 671, 683, 741, 765, 777, 793, 813, 819, 833, 841, 845, 903, 931, 935, 1015, 1029, 1099, 1105, 1183, 1197, 1221
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2010

Keywords

Comments

From Robert Israel, Sep 05 2024: (Start)
According to A000203, sigma_1(m) <= (6/Pi^2)*m^(3/2) for m >= 12. Thus since sigma_2(m) > m^2, sigma_2(m)/sigma_1(m) > (Pi^2/6) * m^(1/2).
This would suggest that to find all terms <= K of this sequence we should look at sigma_2(m)/sigma_1(m) for m <= 36 * K^2/Pi^4. But using the b-file for A004394 we may get a good upper bound for sigma_1(m)/m for m in this interval, resulting in a much smaller search region. (End)

Crossrefs

Programs

  • Maple
    # This uses the b-file for A004394
    K:= 10000: # to get terms <= K
    M:= 36 * K^2/Pi^4:
    for i from 1 while A004394[i] < M do od:
    r:= numtheory:-sigma(A004394[i])/A004394[i]:
    V:= Vector(K):
    for m from 1 to r*K do
      F:= numtheory:-divisors(m);
    v:= add(d^2, d=F)/add(d,d=F);
    if v::integer and v <= K and V[v] = 0 then V[v]:= m fi;
    od:
    select(v -> V[v] > 0, [$1..K]); # Robert Israel, Sep 05 2024

Extensions

More terms from Robert Israel, Sep 05 2024

A328952 Arithmetic numbers (A003601) that are not antiharmonic (A020487).

Original entry on oeis.org

3, 5, 6, 7, 11, 13, 14, 15, 17, 19, 21, 22, 23, 27, 29, 30, 31, 33, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 51, 53, 54, 55, 56, 57, 59, 60, 61, 62, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78, 79, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 96, 97, 99, 101, 102
Offset: 1

Views

Author

Jaroslav Krizek, Nov 17 2019

Keywords

Comments

Numbers m such that the arithmetic mean of the divisors of m is an integer but the antiharmonic mean of the divisors of m is not an integer.
Numbers m such that A(m) = A000203(m) / A000005(m) is an integer but B(m) = A001157(m) / A000203(m) is not an integer.
Corresponding values of A(m): 2, 3, 3, 4, 6, 7, 6, 6, 9, 10, 8, 9, 12, 10, 15, 9, 16, 12, 12, 19, 15, 14, 21, 12, 22, ...
Corresponding values of B(m): 5/2, 13/3, 25/6, 25/4, 61/6, 85/7, 125/12, 65/6, 145/9, 181/10, 125/8, ...

Crossrefs

Complement of A277553 with respect to A003601.

Programs

  • Magma
    [m: m in [1..10^5] | IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(&+[d^2: d in Divisors(m)] / SumOfDivisors(m))]
    
  • Mathematica
    Select[Range[100], Divisible[(sigma = DivisorSigma[1, #]), DivisorSigma[0, #]] && !Divisible[DivisorSigma[2, #], sigma] &]  (* Amiram Eldar, Nov 17 2019 *)
  • PARI
    isok(m) = !(sigma(m) % numdiv(m)) && (sigma(m,2) % sigma(m)); \\ Michel Marcus, Nov 18 2019

A328953 Antiharmonic numbers (A020487) that are not arithmetic (A003601).

Original entry on oeis.org

4, 9, 16, 25, 36, 50, 64, 81, 100, 117, 121, 144, 180, 196, 200, 225, 242, 256, 289, 324, 325, 400, 441, 450, 468, 484, 529, 576, 578, 625, 650, 676, 729, 784, 800, 841, 900, 968, 1024, 1058, 1089, 1156, 1225, 1280, 1296, 1300, 1444, 1476, 1521, 1600, 1620
Offset: 1

Views

Author

Jaroslav Krizek, Nov 17 2019

Keywords

Comments

Numbers m such that the antiharmonic mean of the divisors of m is an integer but the arithmetic mean of the divisors of m is not an integer.
Numbers m such that B(m) = A001157(m) / A000203(m) is an integer but A(m) = A000203(m) / A000005(m) is not an integer.
Corresponding values of B(m): 3, 7, 11, 21, 21, 35, 43, 61, 63, 85, 111, 77, 91, 129, 119, 147, 185, 171, 273, 183, ...
Corresponding values of A(m): 7/3, 13/3, 31/5, 31/3, 91/9, 31/2, 127/7, 121/5, 217/9, 91/3, 133/3, ...

Crossrefs

Complement of A277553 with respect to A020487.

Programs

  • Magma
    [m: m in [1..10^5] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and IsIntegral(&+[d^2: d in Divisors(m)] / SumOfDivisors(m))]
  • Mathematica
    Select[Range[1620], !Divisible[(sigma = DivisorSigma[1, #]), DivisorSigma[0, #]] && Divisible[DivisorSigma[2, #], sigma] &] (* Amiram Eldar, Nov 17 2019 *)

A328954 Numbers m that are neither arithmetic (A003601) nor antiharmonic (A020487).

Original entry on oeis.org

2, 8, 10, 12, 18, 24, 26, 28, 32, 34, 40, 48, 52, 58, 63, 72, 74, 75, 76, 80, 82, 84, 88, 90, 98, 104, 106, 108, 112, 120, 122, 124, 128, 130, 136, 146, 148, 152, 156, 160, 162, 170, 171, 172, 175, 176, 178, 192, 194, 202, 208, 216, 218, 226, 228, 232, 234
Offset: 1

Views

Author

Jaroslav Krizek, Dec 03 2019

Keywords

Comments

Numbers m such that neither the arithmetic mean of the divisors of m nor the antiharmonic mean of the divisors of m is an integer.
Numbers m such that neither A(m) = A000203(m)/A000005(m) nor B(m) = A001157(m)/A000203(m) is an integer.
Corresponding values of A(m): 3/2, 15/4, 9/2, 14/3, 13/2, 15/2, 21/2, 28/3, 21/2, 27/2, 45/4, 62/5, ...
Corresponding values of B(m): 5/3, 17/3, 65/9, 15/2, 35/3, 85/6, 425/21, 75/4, 65/3, 725/27, 221/9, ...

Crossrefs

Programs

  • Magma
    [m: m in [1..10^5] | not IsIntegral(SumOfDivisors(m) / NumberOfDivisors(m)) and not IsIntegral(&+[d^2: d in Divisors(m)] / SumOfDivisors(m))]
  • Mathematica
    Select[Range[235], !Divisible[DivisorSigma[2, #], (s = DivisorSigma[1, #])] && !Divisible[s, DivisorSigma[0, #]] &] (* Amiram Eldar, Dec 06 2019 *)

A176800 a(n) = all values of A176797(m) in increasing order, where A176797(m) = antiharmonic means of divisors of antiharmonic numbers A020487.

Original entry on oeis.org

1, 3, 7, 11, 13, 21, 21, 35, 43, 43, 61, 63, 77, 85, 91, 111, 119, 129, 147, 157, 171, 183, 185, 231, 245, 255, 255, 273, 301, 301
Offset: 1

Views

Author

Jaroslav Krizek, Apr 26 2010

Keywords

A368215 a(n) is the smallest number k >= 1 that has exactly n divisors in A020487.

Original entry on oeis.org

1, 4, 16, 36, 256, 100, 200, 576, 400, 800, 2600, 900, 3200, 1800, 16900, 6400, 12800, 3600, 20800, 7200, 11700, 36000, 67600, 14400, 23400, 28800, 32400, 88200, 397800, 64800, 270400, 46800, 152100, 115200, 234000, 93600, 1258400, 230400, 259200, 352800, 1081600
Offset: 1

Views

Author

Marius A. Burtea, Dec 17 2023

Keywords

Comments

a(n) exists for each n because 4^(n-1) has n antiharmonic divisors.

Examples

			a(1) = 1 because 1 has only one divisor 1 = A020487(1).
The numbers 2 and 3 have only the divisor 1 in A020487 and 4 has the divisors 1 = A020487(1) and 4 = A020487(2), so a(2) = 4.
		

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for n in [1..41] do k:=1; while #[d:d in Divisors(k)|f(d)] ne n do k:=k+1; end while; Append(~a,k); end for; a;
    
  • Mathematica
    f[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[2, #], DivisorSigma[1, #]] &]; seq[len_] := Module[{s = Table[0, {len}], c = 0, n = 1}, While[c < len, If[(i = f[n]) <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[25] (* Amiram Eldar, Dec 18 2023 *)
  • PARI
    a(n) = my(k=1); while(sumdiv(k, d, sigma(d, 2)%sigma(d)==0) != n, k++); k; \\ Michel Marcus, Dec 18 2023

A369384 The smallest number k that can be partitioned in n ways as the sum of two numbers from A020487.

Original entry on oeis.org

1, 2, 29, 181, 442, 425, 850, 1300, 2600, 3250, 5525, 11050, 17425, 16900, 44100, 18850, 72250, 44200, 122525, 75400, 55250, 110500, 237250, 188500, 266500, 397800, 375700, 377000, 187850, 221000, 469625, 718250, 640900, 1105000, 1812200, 2340900, 751400, 3591250
Offset: 0

Views

Author

Marius A. Burtea, Jan 25 2024

Keywords

Examples

			a(0) = 1 because 1 cannot be written as the sum of two terms in A020487.
2 = 1 + 1 = A020487(1) + A020487(1), so a(1) = 2.
The numbers 3, 4, ..., 28 can be written as the sum of two terms in A020487 in at most one way and 29 = 4 + 25 = A020487(2) + A020487(6) and 29 = 9 + 20 = A020487(3) + A020487(5), so a(2) = 29.
		

Crossrefs

Programs

  • Magma
    ant:=func; b:=[n: n in [1..700000] |ant(n)]; a:=[]; for n in [0..30] do k:=1; while #RestrictedPartitions(k,2,Set(b)) ne n do k:=k+1; end while; Append(~a,k); end for; a;

Extensions

a(16) corrected and more terms from Michael S. Branicky, Feb 24 2024

A335389 Numbers k such that k and k+1 are both antiharmonic numbers (A020487).

Original entry on oeis.org

49, 324, 1024, 1444, 1681, 2600, 9800, 265225, 332928, 379456, 421200, 1940449, 4198400, 4293184, 4739328, 8346320, 11309768, 27050400, 65918161, 203694425, 384199200, 418488849, 546717924, 2239277041, 2687489280, 4866742025, 5783450400, 6933892900, 7725003664
Offset: 1

Views

Author

Amiram Eldar, Jun 04 2020

Keywords

Comments

Terms of this sequence k such that k and k+1 are both nonsquares (A227771) are 203694425, 4866742025, ...
Can two consecutive numbers be both primitive antiharmonic numbers (A228023)? Numbers k such that k and k+2 are both primitive antiharmonic numbers exist - the first two are 38246258 and 344321280.

Examples

			49 is a term since both 49 and 50 are antiharmonic: sigma_2(49)/sigma(49) = 43 and sigma_2(50)/sigma(50) = 35 are both integers.
		

Crossrefs

Programs

  • Mathematica
    antihQ[n_] := Divisible[DivisorSigma[2, n], DivisorSigma[1, n]]; seq = {}; q1 = antihQ[1];  Do[q2 = antihQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, 2 * 10^6}]; seq

A368216 Number of divisors of n that are antiharmonic numbers (A020487).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 2
Offset: 1

Views

Author

Marius A. Burtea, Jan 15 2024

Keywords

Comments

Differs from A046951 for n = 20, 40, 50, 60, 80, ....

Examples

			a(1) = 1 because 1 has only one divisor 1 = A020487(1) antiharmonic number.
a(4) = 2 because 4 has divisors 1 = A020487(1) and 4 = A020487(2), antiharmonic numbers.
		

Crossrefs

Programs

  • Magma
    f:=func; [#[d:d in Divisors(k)|f(d)]:k in [1..100]];
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, Divisible[DivisorSigma[2, #], DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jan 21 2024 *)

Formula

a(p^k) = floor((k + 2)/2), p prime, k >= 1.
a(p*q) = 1, for p, q prime, p <> q.
a(A005117(k)) = 1, k >= 1.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} 1/A020487(k) = 1.784... . - Amiram Eldar, Jan 26 2024

A377383 Numbers k in A020487 with arithmetic derivative k' (A003415) in A020487.

Original entry on oeis.org

4, 256, 500, 625, 2500, 4225, 11664, 12800, 14580, 81920, 250000, 262144, 364500, 531441, 800000, 2125764, 4734976, 11943936, 27541504, 64000000, 84050000, 107868672, 156250000, 162542848, 195312500, 253472000, 512635136, 544195584, 607642880, 701146368, 770786560
Offset: 1

Views

Author

Marius A. Burtea, Dec 05 2024

Keywords

Comments

Numbers of the form m = 2^(2^(2*k - 1)) are terms. Indeed, m is a square, so it is a term in A020487, and m' = 2^(2*k - 1)*2^(2^(2*k - 1) - 1) = 2^(2^( 2*k - 1) +2*k- 2) is also a square, so it is in A020487.

Examples

			4' = 4 = A020487(2), so 4 is a term.
256 = A020487(22), 256' = 1024 = A020487(48), so 256 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; ant:=func; [n:n in [2..100000]|ant(n) and ant(Floor(f(n)))];
  • Mathematica
    ad[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); ahQ[n_] := Divisible[DivisorSigma[2, n], DivisorSigma[1, n]]; Select[Range[2, 10^6], ahQ[#] && ahQ[ad[#]] &] (* Amiram Eldar, Dec 11 2024 *)
Showing 1-10 of 31 results. Next