cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227777 Least splitter of n-th and (n+1)st partial sums of 1/0! + 1/1! + ... + 1/n! + ... = e.

Original entry on oeis.org

1, 2, 3, 7, 39, 110, 252, 465, 1001, 9545, 27634, 136168, 589394, 398959, 5394991, 36568060, 130087267, 312129649, 5779594018, 5467464369, 69204258903, 186055048882, 403978495031, 8690849042711, 25668568633102, 246378923308185, 1163579759684330
Offset: 1

Views

Author

Clark Kimberling, Jul 30 2013

Keywords

Comments

Suppose x < y. The least splitter of x and y is introduced at A227631 as the least positive integer d such that x <= c/d < y for some integer c; the number c/d is called the least splitting rational of x and y. Let s(n) = 1/0! + 1/1! + ... + 1/n!; since s(n) -> e, the corresponding least splitting rationals (see Example) also approach e.
Conjecture: a(n) <= n*sqrt(n!) for all n>0; see scatterplot under Links. - Jon E. Schoenfield, Jun 28 2015

Examples

			The first 19 splitting rationals are 2, 5/2, 8/3, 19/7, 106/39, 299/110, 685/252, 1264/465, 2721/1001, 25946/9545, 75117/27634, 370143/136168, 1602139/589394, 1084483/398959, 14665106/5394991, 99402293/36568060, 353613854/130087267, 848456353/312129649 & 15710565395/5779594018. Regarding the last one, |15710565395/5779594018 - e| < 10^(-19).
The numerators of these rationals are a proper subsequence of A006258 & A119014 and the denominators are a proper subsequence of A006259 & A119015. - _Robert G. Wilson v_, Jun 27 2015
		

Crossrefs

Cf. A227631.

Programs

  • Mathematica
    z = 16; r[x_, y_] := Module[{a, b, x1 = Min[{x, y}], y1 = Max[{x, y}]}, If[x == y, x, b = NestWhile[#1 + 1 &, 1, ! (a = Ceiling[#1 x1 - 1]) < Ceiling[#1 y1] - 1 &]; (a + 1)/b]]; s[n_] := s[n] = Sum[1/(k - 1)!, {k, 1, n}]; N[Table[s[k], {k, 1, z}]]; t = Table[r[s[n], s[n + 1]], {n, 2, z}]; fd = Denominator[t] (* Peter J. C. Moses, Jul 20 2013 *)

Extensions

a(16)-a(17) from Manfred Scheucher, Jun 23 2015
a(18)-a(19) from Robert G. Wilson v, Jun 27 2015
a(20)-a(27) from Jon E. Schoenfield, Jun 27 2015