cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227786 Take squares larger than 1, subtract 3 from even squares and 2 from odd squares; a(n) = a(n-1) + A168276(n+1) (with a(1) = 1).

Original entry on oeis.org

1, 7, 13, 23, 33, 47, 61, 79, 97, 119, 141, 167, 193, 223, 253, 287, 321, 359, 397, 439, 481, 527, 573, 623, 673, 727, 781, 839, 897, 959, 1021, 1087, 1153, 1223, 1293, 1367, 1441, 1519, 1597, 1679, 1761, 1847, 1933, 2023, 2113, 2207, 2301, 2399, 2497, 2599, 2701
Offset: 1

Views

Author

Antti Karttunen, Jul 31 2013

Keywords

Comments

Conjecture: from n>=2 onward, a(n) gives the positions of 2's in A227761.
a(29) = 897 = 3*13*23 is the first term which is neither prime nor semiprime, that is, has more than two prime divisors.

Crossrefs

Bisections: A082109, A073577. Cf. also A227761.

Formula

a(n) = A000290(n+1) - 2 - (n mod 2).
a(1)=1, and for n>1, a(n) = a(n-1)+A168276(n+1).
a(n) = (1/2) * (2*n^2 + 4*n -3 + (-1)^n) = 2*A116940(n-1) + 1. a(n-1) = 2*ceiling(n^2/2) - 3 = 2*A000985(n) - 3. G.f.: x*(-x^3 - x^2 + 5*x + 1)/((1-x)^3 * (1+x)). - Ralf Stephan, Aug 10 2013