cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227792 Expansion of (1 + 6*x + 17*x^2 - x^3 - 3*x^4)/(1 - 6*x^2 + x^4).

Original entry on oeis.org

1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2013

Keywords

Comments

Also, values i where A067060(i)/i reaches a new maximum (conjectured).

Crossrefs

Cf. A041017.

Programs

  • Mathematica
    CoefficientList[Series[(1+6x+17x^2-x^3-3x^4)/(1-6x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,6,0,-1},{1,6,23,35,134},40] (* Harvey P. Dale, Jun 12 2021 *)
  • PARI
    a(n)=polcoeff((-3*x^4-x^3+17*x^2+6*x+1)/(x^4-6*x^2+1)+O(x^100),n)

Formula

G.f.: (1+6*x+17*x^2-x^3-3*x^4)/((1+2*x-x^2)*(1-2*x-x^2)).
a(2n) = A038723(n+1), n>0.
a(2n+1) = A001109(n+2).
a(n) = (1/4) * (A135532(n+3) + (-1)^n*A001333(n+2) ).