A227815 Composite numbers n divisible by their concatenated exponents in prime factorization.
4, 16, 22, 27, 33, 55, 63, 77, 143, 187, 209, 222, 248, 253, 256, 319, 341, 407, 451, 473, 484, 517, 555, 583, 649, 656, 671, 737, 777, 781, 803, 837, 869, 913, 979, 1067, 1111, 1133, 1152, 1177, 1199, 1221, 1243, 1397, 1441, 1443, 1507, 1529, 1639, 1661, 1727
Offset: 1
Examples
248 = 2^3*31 => 31 is the concatenate exponents 3 and 1, so 31 divides 248.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Maple
with(numtheory):for n from 1 to 10000 do:x:=ifactors(n):y:=x[2];n1:=nops(y):s:=0:for i from 1 to n1 do:z:=y[i][2]:s:=s+z*10^(n1-i):od:if type(n,prime)=false and irem(n,s)=0 then printf(`%d, `, n):else fi:od:
-
Mathematica
With[{predicate = And[CompositeQ[#], Divisible[#, FromDigits[Join @@ IntegerDigits@(Last /@ FactorInteger[#])]]] &}, Select[Range[10000], predicate]] (* Sidney Cadot, Feb 19 2023 *)
-
Python
from sympy import isprime, factorint def ok(n): return n > 1 and not isprime(n) and n%int("".join(str(e) for e in factorint(n).values())) == 0 print([k for k in range(1728) if ok(k)]) # Michael S. Branicky, Feb 19 2023
Comments