cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227846 Self-convolution equals A227845.

Original entry on oeis.org

1, 1, 3, 11, 47, 215, 1029, 5077, 25615, 131455, 683749, 3595341, 19075913, 101978321, 548683499, 2968535115, 16138308655, 88107960847, 482839660509, 2654879900085, 14641704563577, 80968432526961, 448856443832643, 2493858308981331, 13884356040349161, 77445573778294041
Offset: 0

Views

Author

Paul D. Hanna, Aug 01 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 47*x^4 + 215*x^5 + 1029*x^6 +...
where A(x)^2 equals the g.f. of A227845:
A(x)^2 = 1/(1-x) + x/(1-x)^3*(1+x)^2 + x^2/(1-x)^5*(1 + 2^2*x + x^2)^2
+ x^3/(1-x)^7*(1 + 3^2*x + 3^2*x^2 + x^3)^2
+ x^4/(1-x)^9*(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)^2
+ x^5/(1-x)^11*(1 + 5^2*x + 10^2*x^2 + 10^2*x^3 + 5^2*x^4 + x^5)^2
+ x^6/(1-x)^13*(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)^2 +...
and also:
A(x)^2 = 1 + x*(1 + (1+x)) + x^2*(1 + 2^2*(1+x) + (1+2^2*x+x^2)) + x^3*(1 + 3^2*(1+x) + 3^2*(1+2^2*x+x^2) + (1+3^2*x+3^2*x^2+x^3)) + x^4*(1 + 4^2*(1+x) + 6^2*(1+2^2*x+x^2) + 4^2*(1+3^2*x+3^2*x^2+x^3) + (1+4^2*x+6^2*x^2+4^2*x^3+x^4)) + ...
Explicitly,
A(x)^2 = 1 + 2*x + 7*x^2 + 28*x^3 + 125*x^4 + 590*x^5 + 2891*x^6 +...+ A227845(n)*x^n +...
		

Crossrefs

Cf. A227845.

Programs

  • PARI
    {a(n)=polcoeff(sqrt(sum(m=0,n,x^m*sum(k=0,m,binomial(m,k)^2*sum(j=0,k,binomial(k,j)^2*x^j)+x*O(x^n)))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    /* From g.f. 1/sqrt( AGM((1+x)^2, (1+x)^2 - 8*x) ): */
    {a(n)=local(A); A = 1/sqrt( agm((1+x)^2, (1+x)^2 - 8*x +x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1 / sqrt( AGM((1+x)^2, (1+x)^2 - 8*x) ), where AGM denotes the arithmetic-geometric mean. - Paul D. Hanna, Jul 31 2014
G.f.: sqrt( Sum_{n>=0} A227845(n)*x^n ), where A227845(n) = Sum_{k=0..[n/2]} Sum_{j=k..n-k} binomial(n-k,j)^2*binomial(j,k)^2.
a(n) ~ (1+sqrt(2))^(2*n+1) / (4*n*sqrt(Pi*log(n))) * (1 - (2*gamma + 5*log(2))/(4*log(n)) + (12*gamma^2 + 60*gamma*log(2) + 75*log(2)^2 - 2*Pi^2) / (32*log(n)^2)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Sep 29 2019