A227883 Number of permutations of [n] with exactly one occurrence of the consecutive step pattern up, down, up.
0, 0, 0, 0, 5, 50, 328, 2154, 16751, 144840, 1314149, 12735722, 134159743, 1519210786, 18272249418, 233231701166, 3159471128588, 45243728569842, 682183513506619, 10807962134238068, 179606706777512992, 3123700853586733882, 56737351453843424893
Offset: 0
Keywords
Examples
a(4) = 5: 1324, 1423, 2314, 2413, 3412. a(5) = 50: 12435, 12534, 13245, ..., 52314, 52413, 53412.
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..460 (first 195 terms from Alois P. Heinz)
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(t=7, 0, `if`(u+o=0, `if`(t in [4, 5, 6], 1, 0), add(b(u-j, o+j-1, [1, 3, 1, 5, 6, 6][t]), j=1..u)+ add(b(u+j-1, o-j, [2, 2, 4, 4, 7, 4][t]), j=1..o))) end: a:= n-> b(n, 0, 1): seq(a(n), n=0..25);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[t == 7, 0, If[u + o == 0, If[4 <= t <= 6, 1, 0], Sum[b[u - j, o + j - 1, {1, 3, 1, 5, 6, 6}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, {2, 2, 4, 4, 7, 4}[[t]]], {j, 1, o}]]]; a[n_] := b[n, 0, 1]; a /@ Range[0, 25] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
Formula
a(n) ~ c * d^n * n! * n, where d = A245758 = 0.782704180171521701844707..., c = 0.575076701401064911213333442496869737011... . - Vaclav Kotesovec, Aug 22 2014