A227884 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern up, down, up; triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2)-1), read by rows.
1, 1, 2, 6, 19, 5, 70, 50, 331, 328, 61, 1863, 2154, 1023, 11637, 16751, 10547, 1385, 81110, 144840, 102030, 34900, 635550, 1314149, 1109973, 518607, 50521, 5495339, 12735722, 13046040, 6858598, 1781101, 51590494, 134159743, 157195762, 97348436, 36004400
Offset: 0
Examples
T(4,1) = 5: 1324, 1423, 2314, 2413, 3412. Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 6; : 4 : 19, 5; : 5 : 70, 50; : 6 : 331, 328, 61; : 7 : 1863, 2154, 1023; : 8 : 11637, 16751, 10547, 1385; : 9 : 81110, 144840, 102030, 34900; : 10 : 635550, 1314149, 1109973, 518607, 50521;
Links
- Alois P. Heinz, Rows n = 0..170, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand( add(b(u-j, o+j-1, [1, 3, 1][t]), j=1..u)+ add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)): seq(T(n), n=0..15);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, Expand[Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]], {j, 1, u}]+Sum[b[u+j-1, o-j, 2]*If[t==3, x, 1], {j, 1, o}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 1]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Mar 29 2017, translated from Maple *)