cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227884 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern up, down, up; triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2)-1), read by rows.

Original entry on oeis.org

1, 1, 2, 6, 19, 5, 70, 50, 331, 328, 61, 1863, 2154, 1023, 11637, 16751, 10547, 1385, 81110, 144840, 102030, 34900, 635550, 1314149, 1109973, 518607, 50521, 5495339, 12735722, 13046040, 6858598, 1781101, 51590494, 134159743, 157195762, 97348436, 36004400
Offset: 0

Views

Author

Alois P. Heinz, Oct 25 2013

Keywords

Examples

			T(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
Triangle T(n,k) begins:
:  0 :      1;
:  1 :      1;
:  2 :      2;
:  3 :      6;
:  4 :     19,       5;
:  5 :     70,      50;
:  6 :    331,     328,      61;
:  7 :   1863,    2154,    1023;
:  8 :  11637,   16751,   10547,   1385;
:  9 :  81110,  144840,  102030,  34900;
: 10 : 635550, 1314149, 1109973, 518607, 50521;
		

Crossrefs

Columns k=0-1 give: A177477, A227883.
T(2n,n-1) gives A000364(n) for n>=2.
Row sums give: A000142.

Programs

  • Maple
    b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
          add(b(u-j, o+j-1, [1, 3, 1][t]), j=1..u)+
          add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
    seq(T(n), n=0..15);
  • Mathematica
    b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, Expand[Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]], {j, 1, u}]+Sum[b[u+j-1, o-j, 2]*If[t==3, x, 1], {j, 1, o}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 1]];
    Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Mar 29 2017, translated from Maple *)