A228452 Smallest prime k such that k*2^n-1 , k*2^n-1+2*j , k*2^n-1+4*j or k*2^n-1-2*j , k*2^n-1 , k*2^n-1+2*j are consecutive primes in arithmetic progression for some j.
3, 53, 19, 3, 19, 593, 313, 113, 1699, 1163, 31, 4217, 31, 47, 7993, 1013, 631, 347, 3793, 3923, 397, 353, 2551, 83, 2719, 971, 3709, 6827, 6361, 593, 2053, 16073, 2719, 2753, 4441, 8663, 31, 131, 61, 5867, 379, 587, 9631, 1907, 8581, 23, 15739, 4049, 2281
Offset: 1
Keywords
Examples
53*2^2-1-12=199, 53*2^2-1=211 and 53*2^2-1+12=223, so a(2)=53. 19*2^3-1=151, 19*2^3-1+6=157 and 19*2^3-1+12=163, so a(3)=19.
Links
- Pierre CAMI, Table of n, a(n) for n = 1..350
- Pierre CAMI, PFGW Script
Crossrefs
Cf. A227888.
Comments