cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227891 Numbers for which the number of odious proper divisors (A000069) equals the number of evil proper divisors (A001969).

Original entry on oeis.org

1, 9, 25, 289, 441, 529, 625, 841, 1849, 2809, 3249, 5041, 6889, 7225, 7569, 7921, 10201, 12769, 15129, 15625, 19321, 21025, 22201, 26569, 31329, 38809, 46225, 48841, 53361, 55225, 66049, 69169, 72361, 76729, 78961, 83521, 85849, 93025, 96721, 100489, 103041
Offset: 1

Views

Author

Keywords

Comments

All terms are odd squares (see Shevelev links).

Examples

			1 has no proper divisors, so it is in the sequence.
9 has two proper divisors 1 (odious) and 3 (evil). Thus 9 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    isQ[n_] := Sum[Switch[Mod[Total[IntegerDigits[d, 2]], 2], 0, 1, 1, -1], {d, Most[Divisors[n]]}] == 0; Select[(2*Range[200]-1)^2, isQ] (* Jean-François Alcover, Dec 04 2015 *)
  • PARI
    is(n)=sumdiv(n,d,(-1)^hammingweight(d))==(-1)^hammingweight(n)
    select(is, vector(10^4,i,(2*i-1)^2)) \\ Charles R Greathouse IV, Oct 26 2013
    
  • PARI
    c=0; forstep(i=1, 8135, 2, n=i^2; nd=numdiv(n); d=divisors(n); ce=0; co=0; for(j=1, nd-1, if(hammingweight(d[j])%2==0, ce++, co++)); if(ce==co, c++; write("b227891.txt", c " " n))) \\ Donovan Johnson, Oct 30 2013

Formula

Common value for numbers of considered divisors is (A000005(a(n))-1)/2.