A227895 Integer areas of integer-sided triangles where at least one median is of prime length.
12, 24, 60, 120, 168, 240, 420, 660, 720, 840, 1092, 1320, 1680, 2448, 2520, 2640, 3360, 3420, 3960, 5280, 5460, 6072, 6240, 6840, 9360, 10920, 12240, 14280, 15600, 15960, 16320, 17160, 18480, 21840, 22440, 24480, 26520, 27720, 31920, 35880, 38760, 43680
Offset: 1
Keywords
Examples
1680 is in the sequence because the triangle (a,b,c) = (52, 102, 146) => A = 1680 and m1 = 4*sqrt(949), m2 = 35 and m3 = 97 is a prime number.
Links
- Andrew Bremner and Richard K. Guy, A Dozen Difficult Diophantine Dilemmas, American Mathematical Monthly 95(1988) 31-36.
- Ralph H. Buchholz, On Triangles with rational altitudes, angle bisectors or medians, Newcastle University (1989), 21-22.
- Ralph H. Buchholz and Randall L. Rathbun, An infinite set of Heron triangles with two rational medians, The American Mathematical Monthly, Vol. 104, No. 2 (Feb., 1997), pp. 107-115.
- Eric W. Weisstein, MathWorld: HeronianTriangle
Crossrefs
Cf. A181924.
Programs
-
Mathematica
nn=800;lst={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s (s-a) (s-b) (s-c);m1=(2*b^2+2*c^2-a^2)/4;m2=(2*c^2+2*a^2-b^2)/4;m3=(2*a^2+2*b^2-c^2)/4;If[0
Comments