cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A227923 Number of ways to write n = x + y (x, y > 0) such that 6*x-1 is a Sophie Germain prime and {6*y-1, 6*y+1} is a twin prime pair.

Original entry on oeis.org

0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 1, 4, 2, 4, 4, 2, 5, 3, 4, 4, 2, 5, 4, 4, 5, 1, 3, 3, 5, 8, 4, 7, 4, 3, 7, 2, 7, 6, 5, 8, 3, 6, 6, 4, 10, 4, 8, 5, 4, 10, 3, 9, 4, 4, 6, 1, 8, 5, 5, 8, 4, 4, 6, 3, 7, 1, 3, 5, 4, 10, 5, 7, 6, 3, 11, 3, 9, 5, 5, 6, 2, 7, 5, 5, 9, 4, 6, 4, 5, 9, 2, 6, 3, 4, 5, 2, 6, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 09 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Moreover, any integer n > 4 not equal to 13 can be written as x + y with x and y distinct and greater than one such that 6*x-1 is a Sophie Germain prime and {6*y-1, 6*y+1} is a twin prime pair.
(ii) Any integer n > 1 can be written as x + y (x, y > 0) such that 6*x-1 is a Sophie Germain prime, and {6*y+1, 6*y+5} is a cousin prime pair (or {6*y-1, 6*y+5} is a sexy prime pair).
Part (i) of the conjecture implies that there are infinitely many Sophie Germain primes, and also infinitely many twin prime pairs. For example, if all twin primes does not exceed an integer N > 2, and (N+1)!/6 = x + y with 6*x-1 a Sophie Germain prime and {6*y-1, 6*y+1} a twin prime pair, then (N+1)! = (6*x-1) + (6*y+1) with 1 < 6*y+1 < N+1, hence we get a contradiction since (N+1)! - k is composite for every k = 2..N.
We have verified that a(n) > 0 for all n = 2..10^8.
Conjecture verified up to 10^9. - Mauro Fiorentini, Jul 07 2023

Examples

			a(5) = 2 since 5 = 2 + 3 = 4 + 1, and 6*2-1 = 11 and 6*4-1 = 23 are Sophie Germain primes, and {6*3-1, 6*3+1} = {17, 19} and {6*1-1, 6*1+1} = {5,7} are twin prime pairs.
a(28) = 1 since 28 = 5 + 23 with 6*5-1 = 29 a Sophie Germain prime and {6*23-1, 6*23+1} = {137, 139} a twin prime pair.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=PrimeQ[6n-1]&&PrimeQ[12n-1]
    TQ[n_]:=PrimeQ[6n-1]&&PrimeQ[6n+1]
    a[n_]:=Sum[If[SQ[i]&&TQ[n-i],1,0],{i,1,n-1}]
    Table[a[n],{n,1,100}]
Showing 1-1 of 1 results.