A227924 Triangle T(n,k): the number of binary sequences of n zeros and n ones in which the shortest run is of length k.
2, 4, 2, 18, 0, 2, 64, 4, 0, 2, 238, 12, 0, 0, 2, 890, 28, 4, 0, 0, 2, 3348, 70, 12, 0, 0, 0, 2, 12662, 182, 20, 4, 0, 0, 0, 2, 48102, 466, 38, 12, 0, 0, 0, 0, 2, 183460, 1186, 84, 20, 4, 0, 0, 0, 0, 2
Offset: 1
Examples
The triangle begins: 2, 4, 2, 18, 0, 2, 64, 4, 0, 2, 238, 12, 0, 0, 2, ... The second row counts the sets {0101, 1010, 0110, 1001} and {0011, 1100}.
Links
- Andrew Woods, Rows n = 1..50 of triangle, flattened
Crossrefs
Cf. A229756.
Programs
-
PARI
bn(n,k)=binomial(max(0,n),k) f(n,k)=2*sum(x=1,floor(n/k),bn(n+x*(1-k)-1,x-1)*(bn(n+x*(1-k)-1,x-1)+bn(n+(x+1)*(1-k)-1,x))) T(n,k)=f(n,k)-f(n,k+1) r(n)=vector(n,x,T(n,x))
Comments