A227936 Triangular numbers which become primes when their rightmost digit is removed.
21, 28, 36, 55, 78, 136, 171, 190, 231, 378, 435, 595, 1035, 1275, 1378, 2278, 2415, 2775, 4095, 5778, 5995, 7875, 8778, 10878, 11175, 11935, 14535, 14878, 21115, 26335, 27495, 31375, 31878, 36315, 37675, 42195, 47895, 52975, 55278, 60378, 66795, 68635, 75078
Offset: 1
Examples
a(3)=36: T(8)=36. Removing the rightmost digit gives 3, which is prime. a(9)=231: T(21)=231. Removing the rightmost digit gives 23, which is prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..10000
Programs
-
Maple
KD := proc(n) local a, b, d; a :=n/2*(n+1); b:=floor(a/10); if isprime(b) then return (a) end if; end proc: seq(KD(n), n=1..10);