A227937 Partitions of n labeled elements into subsets of two or three elements.
1, 0, 1, 1, 3, 10, 25, 105, 385, 1540, 7245, 32725, 164395, 870870, 4689685, 27152125, 161786625, 997196200, 6443061625, 42702885225, 292938721075, 2078239413250, 15119319039825, 113390111659825, 873538909468225, 6894294734827500, 55855506234653125, 463151808682688125, 3927996120260086875, 34081631999814148750, 301951521812713898125, 2731127272307562253125, 25208456056107710010625, 237164027532948085570000
Offset: 0
Examples
The five elements a, b, c, d, e have ten partitions into sets of size two or three: ab/cde, ac/bde, ad/bce, ae/bcd, bc/ade, bd/ace, be/acd, cd/abe, ce/abd, and de/abc.
Programs
-
Mathematica
Flatten[{1,RecurrenceTable[{2*a[n] - 2*(n-1)*a[n-2]-(n-2)*(n-1)*a[n-3] == 0,a[1]==0,a[2]==1,a[3]==1}, a, {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 09 2013 *)
-
PARI
x='x+O('x^66); Vec( serlaplace( exp( x^2/2 + x^3/6 ) ) ) \\ Joerg Arndt, Oct 07 2013
Formula
a(n) = (n-1)*a(n-2) + (n-1)*(n-2)*a(n-3)/2.
E.g.f.: exp( x^2/2 + x^3/6 ). [Joerg Arndt, Oct 07 2013]
a(n) ~ n^(2*n/3) * 2^(-n/3) * exp(2/9 - 2*n/3 - (2*n)^(1/3)/3 + (2*n)^(2/3)/2)/sqrt(3) * (1 + 34/(162*(2*n)^(1/3)) - 34802/(131220*(2*n)^(2/3))). - Vaclav Kotesovec, Oct 09 2013
Comments