cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227937 Partitions of n labeled elements into subsets of two or three elements.

Original entry on oeis.org

1, 0, 1, 1, 3, 10, 25, 105, 385, 1540, 7245, 32725, 164395, 870870, 4689685, 27152125, 161786625, 997196200, 6443061625, 42702885225, 292938721075, 2078239413250, 15119319039825, 113390111659825, 873538909468225, 6894294734827500, 55855506234653125, 463151808682688125, 3927996120260086875, 34081631999814148750, 301951521812713898125, 2731127272307562253125, 25208456056107710010625, 237164027532948085570000
Offset: 0

Views

Author

David Eppstein, Oct 06 2013

Keywords

Comments

Periodic modulo two and modulo three, but appears to eventually be divisible by other prime powers.

Examples

			The five elements a, b, c, d, e have ten partitions into sets of size two or three: ab/cde, ac/bde, ad/bce, ae/bcd, bc/ade, bd/ace, be/acd, cd/abe, ce/abd, and de/abc.
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,RecurrenceTable[{2*a[n] - 2*(n-1)*a[n-2]-(n-2)*(n-1)*a[n-3] == 0,a[1]==0,a[2]==1,a[3]==1}, a, {n, 1, 20}]}] (* Vaclav Kotesovec, Oct 09 2013 *)
  • PARI
    x='x+O('x^66); Vec( serlaplace( exp( x^2/2 + x^3/6 ) ) ) \\ Joerg Arndt, Oct 07 2013

Formula

a(n) = (n-1)*a(n-2) + (n-1)*(n-2)*a(n-3)/2.
E.g.f.: exp( x^2/2 + x^3/6 ). [Joerg Arndt, Oct 07 2013]
a(n) ~ n^(2*n/3) * 2^(-n/3) * exp(2/9 - 2*n/3 - (2*n)^(1/3)/3 + (2*n)^(2/3)/2)/sqrt(3) * (1 + 34/(162*(2*n)^(1/3)) - 34802/(131220*(2*n)^(2/3))). - Vaclav Kotesovec, Oct 09 2013