cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070965 a(1) = 1; a(n+1) = sum{k|n} a(k) * mu(k), where the sum is over the positive divisors, k, of n; and mu(k) is the Moebius function.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, -1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, -1, 2, -1, 2, 0, 0, 0, 0, 1, 0, -1, -1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 1, -1, -1, 0, 1, -1, 2, 3, 1, 0, 0, 1, 0, 0, 1, -1, 2, 1, 0, -1, 0, -1, -2, 2, -1, 1, 1, 0, 1, 1, 2, 1, 3, 0, 1, -1, -2, 0, 2, 2, 2, 1, 0, -1, 0, 1, 0, 2, -1, 0
Offset: 1

Views

Author

Leroy Quet, May 16 2002

Keywords

Comments

Conjecture: all integers are present. - W. Edwin Clark, Aug 20 2004
a(A227953(n)) = n and a(A227954(n)) = -n. - Reinhard Zumkeller, Aug 01 2013

Examples

			a(7) = a(1) mu(1) + a(2) mu(2) + a(3) mu(3) + a(6) mu(6) = 1 - 1 - 0 + 1 = 1 because 1, 2, 3 and 6 are the divisors of 6.
		

Crossrefs

Programs

  • Haskell
    a070965 n = a070965_list !! (n-1)
    a070965_list = 1 : f 1 where
       f x = y : f (x + 1) where
         y = sum $ zipWith (*) (map a070965 $ a027750_row x) (a225817_row x)
    -- Reinhard Zumkeller, Jul 30 2013
  • Maple
    a:=proc(n) option remember; add(numtheory[mobius](i)*a(i),i in numtheory[divisors](n-1)) end: a(1):=1: seq(a(n),n=1..100); # Alec Mihailovs, Aug 20 2004
  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = Block[{d = Divisors[n - 1]}, Plus @@ (MoebiusMu[d]*a /@ d)]; Table[ a[n], {n, 105}] (* Robert G. Wilson v, Aug 21 2004 *)
  • PARI
    a(n)=if(n<3,1,sumdiv(n-1,k,a(k)*moebius(k))) \\ Charles R Greathouse IV, Feb 07 2013
    

A227954 Smallest m such that A070965(m) = -n.

Original entry on oeis.org

3, 15, 78, 115, 155, 310, 231, 911, 619, 691, 464, 863, 1294, 1616, 3240, 2235, 1240, 2240, 3472, 3183, 4479, 2766, 4148, 9212, 6588, 4567, 2587, 2588, 4846, 6479, 3231, 7763, 3744, 3743, 2479, 2480, 6367, 7440, 12936, 2768, 9914, 9395, 13415, 11059, 9792
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 01 2013

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a227954 = (+ 1) . fromJust . (`elemIndex` a070965_list) . negate

Formula

A070965(a(n)) = -n and A070965(m) <> -n for m < a(n);
A070965(A227953(n)) = n.
Showing 1-2 of 2 results.