cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A227956 Possible lengths of minimal prime number rulers.

Original entry on oeis.org

3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 44, 62
Offset: 1

Views

Author

Peter Luschny, Aug 26 2013

Keywords

Comments

A ruler is a prime number ruler provided all its interior marks are on a prime number position. A ruler is called complete when any positive integer distance up to the length of the ruler can be measured. A complete ruler is called minimal when any subsequence of its marks is not complete for the same length. A complete ruler is perfect, if there is no complete ruler with the same length which possesses fewer marks. A perfect ruler is minimal (but not conversely). For definitions, references and links related to complete rulers see A103294.
The possible lengths of perfect prime number rulers are: 3, 4, 6, 8, 14, 18, 20, 24, 30, 32. There are 102 prime number rulers in total, 28 of which are minimal prime number rulers and 12 perfect prime number rulers.
a(n) is a finite subsequence of A008864.

Examples

			[0, 2, 3, 5, 7, 11, 17, 18] is a minimal and also a perfect prime number ruler.
[0, 2, 3, 5, 7, 11, 13, 19, 20] is a minimal but not a perfect prime number ruler.