A227968 Determinant of the (p_n+1)/2 X (p_n+1)/2 matrix with (i,j)-entry (i,j=0,...,(p_n-1)/2) equal to the Legendre symbol((i^2+j^2)/p_n), where p_n is the n-th prime.
-1, 2, -12, -80, -162, 3528, -9216, -11264, 482230, -206684160, 1488942450, 976835722500, -1420648513536, -12993312063488, -4001622478404278, -738964000238206976, 73685520670239843750, -13192753286712605540352, -505689449431040
Offset: 2
Keywords
Examples
a(2) = -1 since the determinant |((i^2 + j^2)/3)|_{i=0,1; j=0,1} equals -1.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..70
- Zhi-Wei Sun, On some determinants with Legendre symbol entries, preprint, arXiv:1308.2900 [math.NT], 2013-2019.
Programs
-
Mathematica
a[n_] := Det[Table[JacobiSymbol[i^2+j^2, Prime[n]], {i, 0, (Prime[n]-1)/2}, {j, 0, (Prime[n]-1)/2}]]; Table[a[n], {n, 2, 20}]
-
PARI
a(n) = my(p=prime(n)); matdet(matrix((p+1)/2, (p+1)/2, i, j, i--; j--; kronecker(i^2+j^2, p))); \\ Michel Marcus, Aug 25 2021
Comments