A227973 Minimum composite squarefree numbers k such that p(i)-n divides k+n, for n=1, 2, 3, 4,..., where p(i) are the prime factors of k.
15, 273, 77, 6, 21, 6, 33, 10, 15, 14, 21, 33, 35, 22, 33, 26, 39, 57, 65, 34, 51, 38, 57, 551, 95, 46, 69, 203, 115, 145, 161, 58, 87, 62, 93, 629, 155, 697, 217, 74, 111, 518, 185, 82, 123, 86, 129, 2537, 215, 94, 141, 689, 235, 4366, 329, 106, 159, 1247, 265
Offset: 1
Keywords
Examples
For n=185 the minimum k is 543. Prime factors of 543 are 3 and 181. We have: 543 + 185 = 728, 3 - 185 = -182 and 728 / (-182) = -4, 181 - 185 = -4 and 728 / (-4) = 182.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..500
Programs
-
Maple
with(numtheory); P:=proc(i) local c, d, k, n, ok, p; for k from 1 to i do for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=k then ok:=0; break; fi; if not type((n+k)/(p[d][1]-k), integer) then ok:=0; break; fi; od; if ok=1 then print(n); break; fi; fi; od; od; end: P(10^6);
Comments