A227976 Minimum composite squarefree numbers k such that p(i)-n divides k-n, for n=1, 2, 3, 4,..., where p(i) are the prime factors of k.
561, 1595, 35, 6, 21, 6, 15, 14, 21, 10, 35, 22, 33, 14, 15, 133, 65, 34, 51, 38, 21, 22, 95, 46, 69, 26, 115, 217, 161, 30, 87, 62, 33, 34, 35, 1247, 217, 38, 39, 817, 185, 42, 123, 86, 129, 46, 215, 94, 141, 1247, 51, 1802, 329, 106, 55, 1541, 57, 58, 371
Offset: 1
Keywords
Examples
For n=2 the minimum k is 1595. Prime factors of 1595 are 5, 11, and 29. We have 1595 - 2 = 1593, 5 - 2 = 2 and 1593 / 3 = 531, 11 - 2 = 9 and 1593 / 9 = 177, 29 - 2 = 27 and 1593 / 27 = 59.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..200
Programs
-
Maple
with(numtheory); P:=proc(i) local c, d, k, n, ok, p; for k from 1 to i do for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1; for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=k then ok:=0; break; fi; if not type((n-k)/(p[d][1]-k), integer) then ok:=0; break; fi; od; if ok=1 then print(n); break; fi; fi; od; od; end: P(10^6);
Comments