A228026
Primes of the form 4^k + 3.
Original entry on oeis.org
7, 19, 67, 4099, 65539, 262147, 268435459, 1073741827, 19342813113834066795298819
Offset: 1
67 is a term because 4^3 + 3 = 67 is prime.
Cf. Primes of the form r^k + h:
A092506 (r=2, h=1),
A057733 (r=2, h=3),
A123250 (r=2, h=5),
A104066 (r=2, h=7),
A104070 (r=2, h=9),
A057735 (r=3, h=2),
A102903 (r=3, h=4),
A102870 (r=3, h=8),
A102907 (r=3, h=10),
A290200 (r=4, h=1), this sequence (r=4, h=3),
A228027 (r=4, h=9),
A182330 (r=5, h=2),
A228029 (r=5, h=6),
A102910 (r=5, h=8),
A182331 (r=6, h=1),
A104118 (r=6, h=5),
A104115 (r=6, h=7),
A104065 (r=7, h=4),
A228030 (r=7, h=6),
A228031 (r=7, h=10),
A228032 (r=8, h=3),
A228033 (r=8, h=5),
A144360 (r=8, h=7),
A145440 (r=8, h=9),
A228034 (r=9, h=2),
A159352 (r=10, h=3),
A159031 (r=10, h=7).
-
[a: n in [0..200] | IsPrime(a) where a is 4^n+3];
-
Select[Table[4^n + 3, {n, 0, 200}], PrimeQ]
A228027
Primes of the form 4^k + 9.
Original entry on oeis.org
13, 73, 1033, 262153, 1073741833, 73786976294838206473, 4835703278458516698824713
Offset: 1
262153 is a term because 4^9 + 9 = 262153 is prime.
Cf. Primes of the form r^k + h:
A092506 (r=2, h=1),
A057733 (r=2, h=3),
A123250 (r=2, h=5),
A104066 (r=2, h=7),
A104070 (r=2, h=9),
A057735 (r=3, h=2),
A102903 (r=3, h=4),
A102870 (r=3, h=8),
A102907 (r=3, h=10),
A290200 (r=4, h=1),
A228026 (r=4, h=3), this sequence (r=4, h=9),
A182330 (r=5, h=2),
A228029 (r=5, h=6),
A102910 (r=5, h=8),
A182331 (r=6, h=1),
A104118 (r=6, h=5),
A104115 (r=6, h=7),
A104065 (r=7, h=4),
A228030 (r=7, h=6),
A228031 (r=7, h=10),
A228032 (r=8, h=3),
A228033 (r=8, h=5),
A144360 (r=8, h=7),
A145440 (r=8, h=9),
A228034 (r=9, h=2),
A159352 (r=10, h=3),
A159031 (r=10, h=7).
-
[a: n in [0..200] | IsPrime(a) where a is 4^n+9];
-
Select[Table[4^n + 9, {n, 0, 200}],PrimeQ]
A228028
Primes of the form 5^n + 4.
Original entry on oeis.org
5, 29, 15629, 9765629
Offset: 1
Cf. Primes of the form k^n + h:
A092506 (k=2, h=1),
A057733 (k=2, h=3),
A123250 (k=2, h=5),
A104066 (k=2, h=7),
A104070 (k=2, h=9),
A057735 (k=3, h=2),
A102903 (k=3, h=4),
A102870 (k=3, h=8),
A102907 (k=3, h=10),
A290200 (k=4, h=1),
A228027 (k=4, h=9),
A182330 (k=5, h=2), this sequence (k=5, h=4),
A228029 (k=5, h=6),
A102910 (k=5, h=8),
A182331 (k=6, h=1),
A104118 (k=6, h=5),
A104115 (k=6, h=7),
A104065 (k=7, h=4),
A228030 (k=7, h=6),
A228031 (k=7, h=10),
A228032 (k=8, h=3),
A228033 (k=8, h=5),
A144360 (k=8, h=7),
A145440 (k=8, h=9),
A228034 (k=9, h=2),
A159352 (k=10, h=3),
A159031 (k=10, h=7).
-
[a: n in [0..200] | IsPrime(a) where a is 5^n+4];
-
Select[Table[5^n + 4, {n, 0, 200}], PrimeQ]
A358079
Primes that can be written as 2^x + p where p is a prime and x is a multiple of p.
Original entry on oeis.org
11, 37, 67, 4099, 32771, 262147, 268435463, 1073741827, 36028797018963979, 18889465931478580854821, 151115727451828646838283, 19342813113834066795298819, 618970019642690137449562201, 316912650057057350374175801351, 85070591730234615865843651857942052871
Offset: 1
a(3) = 67 is a term because 67 = 2^6 + 3 where 67 and 3 are prime and 6 is divisible by 3.
Showing 1-4 of 4 results.
Comments