A228038 Dimensions in which nonzero Arf-Kervaire invariants exist.
2, 6, 14, 30, 62, 126
Offset: 2
Links
- J. Baez, ‘Kervaire Invariant One Problem’ Solved, The n-Category Café (blog), April 2009.
- M. A. Hill, M. J. Hopkins and D. C. Ravenel, On the non-existence of elements of Kervaire invariant one, arXiv:0908.3724 [math.AT], 2009-2015.
- Erica Klarreich, Dimension 126 Contains Strangely Twisted Shapes, Mathematicians Prove, Quanta Magazine, May 2025.
- Weinan Lin, Guozhen Wang, and Zhouli Xu, On the Last Kervaire Invariant Problem, arXiv:2412.10879 [math.AT], 2024-2025.
- V. P. Snaith, A history of the Arf-Kervaire invariant problem, Notices Amer. Math. Soc., 60 (No. 8, 2013), 1040-1047.
- Wikipedia, Kervaire invariant
Formula
a(n) = 2^n - 2 for n = 2, 3, 4, 5, 6, 7.
Extensions
a(7) from David Radcliffe, May 09 2025
Comments