A228048 Decimal expansion of (Pi/2)*tanh(Pi/2).
1, 4, 4, 0, 6, 5, 9, 5, 1, 9, 9, 7, 7, 5, 1, 4, 5, 9, 2, 6, 5, 8, 9, 3, 2, 5, 0, 2, 9, 1, 3, 9, 8, 1, 7, 1, 2, 5, 2, 5, 2, 9, 7, 0, 8, 4, 6, 7, 3, 6, 5, 8, 6, 9, 0, 8, 2, 1, 6, 1, 4, 0, 9, 2, 4, 6, 2, 0, 3, 1, 1, 5, 2, 2, 3, 3, 5, 6, 6, 0, 7, 7, 6, 4, 7, 9
Offset: 1
Examples
1/1 + 1/5 + 1/13 + ... = (Pi/2)*tanh(Pi/2) = 1.4406595199775145926589...
References
- Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, p. 189.
Programs
-
Mathematica
$MaxExtraPrecision = Infinity; t[n_, k_] := t[n, k] = n + (n + k - 2) (n + k - 1)/2; u = N[Sum[1/t[n, n], {n, 1, Infinity}], 130]; RealDigits[u, 10] RealDigits[Pi*Tanh[Pi/2]/2, 10, 100][[1]] (* Amiram Eldar, Apr 09 2022 *)
-
PARI
(Pi/2)*tanh(Pi/2) \\ Michel Marcus, Jun 20 2020
Formula
Equals Sum_{k>=0} 1/A001844(k). - Amiram Eldar, Jun 20 2020
Equals Integral_{x=0..oo} sin(x)/sinh(x) dx. - Amiram Eldar, Aug 10 2020
Equals Product_{k>=2} ((k^2 + 1)/(k^2 - 1))^((-1)^k). - Amiram Eldar, Apr 09 2022
Extensions
Name changed by Wolfdieter Lang, Oct 30 2017
Comments