A228086 a(n) is the least k which satisfies n = k + bitcount(k), or 0 if no such k exists. Here bitcount(k) (or wt(k), A000120) gives the number of 1's in binary representation of nonnegative integer k.
0, 0, 1, 2, 0, 3, 0, 5, 6, 8, 7, 9, 10, 0, 11, 0, 13, 14, 0, 15, 18, 0, 19, 0, 21, 22, 24, 23, 25, 26, 0, 27, 0, 29, 30, 33, 31, 0, 35, 0, 37, 38, 40, 39, 41, 42, 0, 43, 0, 45, 46, 0, 47, 50, 0, 51, 0, 53, 54, 56, 55, 57, 58, 0, 59, 64, 61, 62, 66, 63, 67, 0
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Mathematica
a[n_] := Module[{k}, For[k = n - Floor[Log[2, n]] - 1, k < n, k++, If[n == k + DigitCount[k, 2, 1], Return[k]]]; 0]; a /@ Range[0, 1000]; (* Jean-François Alcover, Nov 28 2020 *)
-
Scheme
(define (A228086 n) (if (zero? n) n (let loop ((k (+ (A083058 n) 1))) (cond ((> k n) 0) ((= n (A092391 k)) k) (else (loop (+ 1 k)))))))
Comments