A225611 Determinant of the (p_n-1) X (p_n-1) matrix with (i,j)-entry equal to the Legendre symbol ((i^2+6*i*j+j^2)/p_n), where p_n is the n-th prime.
0, -16, 0, 0, 0, 18939904, 0, 0, -600706205614080, 0, -3126394312091238400, 915844279166632469526048000, 0, 0, 1513783909437524991467008819200000000, 0, -6597762875255062617688526826958066024448000, 0, 0
Offset: 2
Keywords
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 2..50
- Zhi-Wei Sun, On some determinants with Legendre symbol entries, preprint, arXiv:1308.2900 [math.NT], 2013-2019.
Programs
-
Mathematica
a[n_]:=Det[Table[JacobiSymbol[i^2+6*i*j+j^2,Prime[n]],{i,1,(Prime[n]-1)},{j,1,(Prime[n]-1)}]] Table[a[n],{n,2,20}]
-
PARI
a(n) = my(p=prime(n)); matdet(matrix(p-1, p-1, i, j, kronecker(i^2+6*i*j+j^2, p))); \\ Michel Marcus, Aug 25 2021
Comments