A228111
Integer nearest to (S(n)*F(4n)(S(n))), where F(4n)(x) are Fibonacci polynomials of multiple of 4 indices (4n) and S(n) = Sum_{i=0..3} (C(i)*(log(log(A*(B+n^2))))^i) (see coefficients A, B, C(i) in comments).
Original entry on oeis.org
4, 21, 143, 1063, 8385, 68929, 584467, 5074924, 44885325, 402777151, 3656032622, 33492393634, 309106153431, 2870123507479, 26783122426197, 250971797533095, 2359952229466124, 22256979400698116, 210440626023838163, 1994088284872617955, 18931694933036811169
Offset: 1
For n=1, xF(4)(x) = x^2*(x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+1))))^i)= 1.11173... to obtain a(1) = round((1.11173...)*F(4)(1.11173...)) = 4.
For n=2, xF(8)(x) = x^2*(x^2+2)*(x^4+4*x^2+2); replace x with Sum_{i=0..3} (C(i)*(log(log(A*(B+4))))^i)= 0.99998788... to obtain a(2) = round((0.99998788...)*F(8)(0.99998788...)) = 21.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
-
with(combinat):A:=16103485019141/2900449771918928: B:=5262046568827901/29305205016290: C(0):=296261685121849/265642652464758: C(1):=38398556529727/750568780742436: C(2):=0: C(3):=-11594434149768/8254020049890781: b:=n->log(log(A*(B+n^2))): c:=n->sum(C(i)*(b(n))^i, i=0..3): seq(round(c(n)*fibonacci(4*n, c(n))), n=1..25);
Original entry on oeis.org
3, 21, 143, 1061, 8366, 68932, 585881, 5094722, 45074595, 404185377, 3663479699, 33498077106, 308548877876, 2859703657128, 26646019345842, 249434445759050, 2344494354096166, 22116172789221197, 209301155352811190, 1986521422431963549, 18904049485198437478, 180323870540071281301, 1723847795281971132487, 16512536418951055856540, 158463448213030472998711
Offset: 1
For n =1, A227693(1)- A227693(0) =4-1=3, where A227693(1)= round((F[3]( 1.016825…))^2)=4 with F[3](x) = x^2+1 and A227693(0)= round(F[1](x)) =1 with F[1](x)=1
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144.
A228112
Difference between the number of primes with n digits (A006879) and the 6-parametric approximation of that number in A228111.
Original entry on oeis.org
0, 0, 0, -2, -22, -23, 1614, 21952, 200754, 1427826, 6969680, -2536429, -648528610, -11247293516, -143493754330, -1578026921839, -15633412845816, -140582270611489, -1122913035234416, -7326349588043722, -25245049578998081, 301375487087871682, 9140885960557495580, 157255672291012140238, 2265259467069624459434
Offset: 1
A228114
Difference between the number of primes with n digits (A006879) and the difference of consecutive integers nearest to Riemann(10^n) (see A228113).
Original entry on oeis.org
-1, 0, 1, 2, 3, -34, -59, -9, 176, 1749, 490, -842, 4297, 13427, -92418, -253834, 925307, 2903111, -27385699, 28776158, 81540379, 40700461, -1160432518, 2692289572, 175794995
Offset: 1
Original entry on oeis.org
5, 21, 142, 1059, 8360, 68940, 586140, 5096885, 45085903, 404203228, 3663001812, 33489858047, 308457620524, 2858876200536, 26639628764285, 249393770865090, 2344318815695001, 22116397127183516, 209317713015989446, 1986761935255798075, 18906449883376272709
Offset: 1
For n=1, A057793(1) - A057793(0) = 5 - 0 = 5.
- John H. Conway and R. K. Guy, "The Book of Numbers," Copernicus, an imprint of Springer-Verlag, NY, 1996, page 144-146.
Showing 1-5 of 5 results.
Comments