cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228124 Number of blocks in a Steiner Quadruple System of order A047235(n+1).

Original entry on oeis.org

1, 14, 30, 91, 140, 285, 385, 650, 819, 1240, 1496, 2109, 2470, 3311, 3795, 4900, 5525, 6930, 7714, 9455, 10416, 12529, 13685, 16206, 17575, 20540, 22140, 25585, 27434, 31395, 33511, 38024, 40425, 45526, 48230, 53955, 56980, 63365, 66729, 73810, 77531, 85344
Offset: 1

Views

Author

Colin Barker, Aug 11 2013

Keywords

Comments

For order v, the number of blocks is v*(v-1)*(v-2)/24.

Examples

			For n=3, A047235(n+1)=10 and the number of blocks in SQS(10) is 30.
		

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,14,30,91,140,285,385},50] (* Harvey P. Dale, Jul 29 2015 *)
  • PARI
    Vec(x*(x^5+4*x^4+22*x^3+13*x^2+13*x+1)/((x-1)^4*(x+1)^3) + O(x^100))

Formula

a(n) = (n*(1+3*n)*(1+3*(-1)^n+6*n))/16.
a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7).
G.f.: x*(x^5+4*x^4+22*x^3+13*x^2+13*x+1) / ((x-1)^4*(x+1)^3).