A228126 Sum of prime divisors of n (with repetition) is one less than the sum of prime divisors (with repetition) of n+1.
2, 3, 4, 9, 20, 24, 98, 170, 1104, 1274, 2079, 2255, 3438, 4233, 4345, 4716, 5368, 7105, 7625, 10620, 13350, 13775, 14905, 20220, 21385, 23408, 25592, 26123, 28518, 30457, 34945, 35167, 38180, 45548, 49230, 51911, 52206, 53456, 56563, 61456, 65429, 66585
Offset: 1
Examples
For n=20: prime factors = 2,2,5; sum of prime factors = 9. For n+1=21: prime factors = 3,7; sum of prime factors = 10.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..300
- Giovanni Resta, eRAPs: the 446139 terms < 10^12
- Carlos Rivera, Extension to Ruth Aaron pairs
Crossrefs
Programs
-
Mathematica
spd[n_]:=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[n]]]; Rest[ Position[ Partition[Array[spd,70000],2,1],?(#[[2]]-#[[1]]==1&),{1}, Heads->False]//Flatten] (* _Harvey P. Dale, Sep 07 2016 *)
-
PARI
sopfm(n)=my(f=factor(n));sum(i=1,#f[,1],f[i,1]*f[i,2]) for(n=1,10^5,if(sopfm(n)==sopfm(n+1)-1,print1(n,","))) /* Ralf Stephan, Aug 12 2013 */
-
Python
## sumdivisors(n) is a function that would return the sum of prime ## divisors of n. (See A001414) i=2 while i < 100000: sdi=sumdivisors(i) sdip=sumdivisors(i+1) if sdi==sdip-1: print(i) i=i+1
Extensions
More terms from Ralf Stephan, Aug 12 2013
Comments