cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228135 Smaller of two consecutive semiprimes which are anagrams of each other.

Original entry on oeis.org

278, 1945, 2545, 4045, 5389, 9134, 9289, 12634, 17678, 23578, 25034, 25178, 27289, 32245, 32689, 34889, 35078, 40234, 42289, 47578, 47789, 48979, 50579, 51434, 51589, 55534, 55634, 55934, 57289, 57779, 69334, 69478, 70178, 70234, 71945, 71989, 72134, 76345
Offset: 1

Views

Author

Michel Lagneau, Aug 12 2013

Keywords

Comments

Given the n-th semiprime, it is occasionally possible to form the (n+1)-th semiprime using the same digits in a different order.
"Anagram" means that both semiprimes must not only use the same digits but must use each digit the same number of times.

Examples

			278 and 287 are two successive semiprimes.
		

Crossrefs

Programs

  • Maple
    with(numtheory):T:=array(1..50000):k:=0:for i from 1 to 200000 do:if bigomega(i)=2 then k:=k+1:T[k]:=i:else fi:od:for n from 1 to k-1 do:p1:=T[n]:p2:= T[n+1]:pp1:=convert(p1,base,10): pp2:=convert(p2,base,10):n1:=sort(pp1):n2:=sort(pp2): if n1=n2 then printf(`%d, `,p1):else fi:od:
  • Mathematica
    range[n_Integer]:=Select[Range@n,PrimeOmega@#==2&];
    anagramQ[l_List]:=(l1=Sort@#&/@IntegerDigits@l;l1[[1]]==l1[[2]]);
    Select[Partition[range@100000,2,1],anagramQ]\[Transpose]//First (* Hans Rudolf Widmer, Oct 06 2021 *)