cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228146 Triangle T(n,k), read by rows: T(n,k) is the numerator of (1+2^(n-k+1))/(1-2^(k+1)).

Original entry on oeis.org

-3, -5, -1, -9, -5, -3, -17, -3, -5, -1, -33, -17, -9, -1, -3, -65, -11, -17, -3, -5, -1, -129, -65, -33, -17, -9, -5, -3, -257, -43, -65, -11, -17, -1, -5, -1, -513, -257, -129, -13, -33, -17, -9, -1, -3, -1025, -171, -257, -43, -65, -11, -17, -3, -5, -1
Offset: 0

Views

Author

Vincenzo Librandi, Aug 15 2013

Keywords

Comments

The denominators are given in A228147.

Examples

			Triangle begins:
-3;
-5,    -1;
-9,    -5,   -3;
-17,   -3,   -5,   -1;
-33,   -17,  -9,   -1,  -3;
-65,   -11,  -17,  -3,  -5,  -1;
-129,  -65,  -33,  -17, -9,  -5,  -3;
-257,  -43,  -65,  -11, -17, -1,  -5,  -1;
-513,  -257, -129, -13, -33, -17, -9,  -1, -3;
-1025, -171, -257, -43, -65, -11, -17, -3, -5, -1; etc.
		

Crossrefs

Cf. A228147.

Programs

  • Magma
    [Numerator((1+2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..10]];
  • Mathematica
    a[n_, k_] := Numerator[(1 + 2^(n - k + 1))/(1 - 2^(k + 1))]; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten