A228146 Triangle T(n,k), read by rows: T(n,k) is the numerator of (1+2^(n-k+1))/(1-2^(k+1)).
-3, -5, -1, -9, -5, -3, -17, -3, -5, -1, -33, -17, -9, -1, -3, -65, -11, -17, -3, -5, -1, -129, -65, -33, -17, -9, -5, -3, -257, -43, -65, -11, -17, -1, -5, -1, -513, -257, -129, -13, -33, -17, -9, -1, -3, -1025, -171, -257, -43, -65, -11, -17, -3, -5, -1
Offset: 0
Examples
Triangle begins: -3; -5, -1; -9, -5, -3; -17, -3, -5, -1; -33, -17, -9, -1, -3; -65, -11, -17, -3, -5, -1; -129, -65, -33, -17, -9, -5, -3; -257, -43, -65, -11, -17, -1, -5, -1; -513, -257, -129, -13, -33, -17, -9, -1, -3; -1025, -171, -257, -43, -65, -11, -17, -3, -5, -1; etc.
Links
- Vincenzo Librandi, Rows n = 0..90, flattened
Crossrefs
Cf. A228147.
Programs
-
Magma
[Numerator((1+2^(n-k+1))/(1-2^(k+1))): k in [0..n], n in [0..10]];
-
Mathematica
a[n_, k_] := Numerator[(1 + 2^(n - k + 1))/(1 - 2^(k + 1))]; Table[a[n, k], {n, 0, 10}, {k, 0, n}] // Flatten
Comments