A228185 Number of semiprimes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^n.
0, 14, 393, 4761, 47938, 456157, 4293575, 40357922
Offset: 1
Examples
a(4) = 4761 because the number of semiprimes generated from Euler's polynomial x^2 + x + 41 from x = 1 to 10^4 are 4761.
Crossrefs
Cf. A228123.
Programs
-
Mathematica
a = 0; n = 1; t = {}; Do[If[PrimeOmega[x^2 + x + 41]== 2, a = a + 1]; If[Mod[x, n] == 0, n = n*10; AppendTo[t, a]], {x, 1, 100000000}]; t nn=8;With[{ep=If[PrimeOmega[#]==2,1,0]&/@Table[x^2+x+41,{x,10^nn}]}, Table[ Total[Take[ep,10^n]],{n,nn}]] (* Harvey P. Dale, Dec 12 2014 *)