cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A228192 a(n) = A001850(n^2), where A001850 forms the central Delannoy numbers.

Original entry on oeis.org

1, 3, 321, 1462563, 252055236609, 1569245074591690083, 345299757825442889707393857, 2653337188651000290233505189314055363, 706829476163540077094231781323762631545566527489, 6496844758902641761809431955916116052361210081093847336070467
Offset: 0

Views

Author

Paul D. Hanna, Aug 15 2013

Keywords

Examples

			L.g.f.: L(x) = 3*x + 321*x^2/2 + 1462563*x^3/3 + 252055236609*x^4/4 +...
where exponentiation yields the g.f. of A228193:
exp(L(x)) = 1 + 3*x + 165*x^2 + 488007*x^3 + 63015285321*x^4 + 313849204040245803*x^5 +...+ A228193(n)*X^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=sum(k=0,n^2,binomial(n^2,k)*binomial(n^2+k,k))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {A001850(n)=polcoeff(1/sqrt(1 - 6*x + x^2 + x*O(x^n)), n)}
    {a(n)=A001850(n^2)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n^2} binomial(n^2, k) * binomial(n^2+k, k).
a(n) = [x^(n^2)] 1/sqrt(1 - 6*x + x^2).
Equals the logarithmic derivative of A228193, after ignoring the initial term.
Showing 1-1 of 1 results.