cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228233 Number of Gaussian primes of norm less than or equal to n in the first quadrant.

Original entry on oeis.org

0, 1, 5, 7, 9, 11, 17, 21, 23, 27, 35, 37, 41, 47, 49, 55, 63, 69, 77, 83, 91, 97, 103, 109, 119, 127, 133, 143, 151, 159, 169, 179, 187, 199, 209, 219, 227, 237, 245, 251, 265, 279, 287, 301, 311, 323, 335, 351, 367, 377, 385, 401, 419, 431, 441, 455, 469
Offset: 1

Views

Author

Olivier Gérard, Aug 17 2013

Keywords

Comments

Include 2 times the primes (once for the real axis, once for the imaginary axis).
More precisely, a(n) includes all Gaussian primes (with the appropriate norms) on the first quadrant's bounding semi-axes. All such Gaussian primes occur in pairs {p, pi} (one real and one imaginary associate), where p is a classical prime of the form 4m + 3 (so p is in A002145) and p <= n. - Rick L. Shepherd, Jun 16 2017

Crossrefs

Cf. A000603 (number of Gaussian integers in the first quadrant with norm less than or equal to n).
Cf. A062711 (counts the Gaussian primes on only one axis).
Cf. A228232 (this sequence excluding classical primes and pure imaginary primes).
Cf. A002145 (Gaussian primes that are positive integers).

Programs

  • Mathematica
    nn = 100; t = Select[Flatten[Table[a + b*I, {a, 0, nn}, {b, 0, nn}]], PrimeQ[#, GaussianIntegers -> True] &]; t2 = Table[0, {nn}]; Do[f = Ceiling[Abs[i]]; If[f <= nn, t2[[f]]++], {i, t}]; Accumulate[t2] (* T. D. Noe, Aug 19 2013 *)