cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A228275 A(n,k) = Sum_{i=1..k} n^i; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 6, 3, 0, 0, 4, 14, 12, 4, 0, 0, 5, 30, 39, 20, 5, 0, 0, 6, 62, 120, 84, 30, 6, 0, 0, 7, 126, 363, 340, 155, 42, 7, 0, 0, 8, 254, 1092, 1364, 780, 258, 56, 8, 0, 0, 9, 510, 3279, 5460, 3905, 1554, 399, 72, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2013

Keywords

Comments

A(n,k) is the total sum of lengths of longest ending contiguous subsequences with the same value over all s in {1,...,n}^k:
A(4,1) = 4 = 1+1+1+1: [1], [2], [3], [4].
A(1,4) = 4: [1,1,1,1].
A(3,2) = 12 = 2+1+1+1+2+1+1+1+2: [1,1], [1,2], [1,3], [2,1], [2,2], [2,3], [3,1], [3,2], [3,3].
A(2,3) = 14 = 3+1+1+2+2+1+1+3: [1,1,1], [1,1,2], [1,2,1], [1,2,2], [2,1,1], [2,1,2], [2,2,1], [2,2,2].

Examples

			Square array A(n,k) begins:
  0, 0,  0,   0,    0,     0,      0,      0, ...
  0, 1,  2,   3,    4,     5,      6,      7, ...
  0, 2,  6,  14,   30,    62,    126,    254, ...
  0, 3, 12,  39,  120,   363,   1092,   3279, ...
  0, 4, 20,  84,  340,  1364,   5460,  21844, ...
  0, 5, 30, 155,  780,  3905,  19530,  97655, ...
  0, 6, 42, 258, 1554,  9330,  55986, 335922, ...
  0, 7, 56, 399, 2800, 19607, 137256, 960799, ...
		

Crossrefs

Rows n=0-11 give: A000004, A001477, A000918(k+1), A029858(k+1), A080674, A104891, A105281, A104896, A052379(k-1), A052386, A105279, A105280.
Main diagonal gives A031972.
Lower diagonal gives A226238.
Cf. A228250.

Programs

  • Maple
    A:= (n, k)-> `if`(n=1, k, (n/(n-1))*(n^k-1)):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[0, 0] = 0; a[1, k_] := k; a[n_, k_] := n*(n^k-1)/(n-1); Table[a[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 16 2013 *)

Formula

A(1,k) = k, else A(n,k) = n/(n-1)*(n^k-1).
A(n,k) = Sum_{i=1..k} n^i.
A(n,k) = Sum_{i=1..k+1} binomial(k+1,i)*A(n-i,k)*(-1)^(i+1) for n>k, given values A(0,k), A(1,k),..., A(k,k). - Yosu Yurramendi, Sep 03 2013

A228194 Sum of lengths of longest contiguous subsequences with the same value over all s in {1,...,n}^n.

Original entry on oeis.org

0, 1, 6, 45, 436, 5345, 79716, 1403689, 28518736, 656835633, 16913175310, 481496895121, 15017297246832, 509223994442449, 18652724643726460, 733989868341011325, 30879549535458286096, 1383134389475750109089, 65714992805644764521724, 3300990246208225995520681
Offset: 0

Views

Author

Alois P. Heinz, Aug 17 2013

Keywords

Examples

			a(2) = 6 = 2+1+1+2: [1,1], [1,2], [2,1], [2,2].
		

Crossrefs

Main diagonal of A228250.
Cf. A228618.

Programs

  • Maple
    a:= proc(n) option remember; local b; b:=
          proc(m, s, i) option remember; `if`(m>i or s>m, 0,
           `if`(i=1, n, `if`(s=1, (n-1)*add(b(m, h, i-1), h=1..m),
            b(m, s-1, i-1) +`if`(s=m, b(m-1, s-1, i-1), 0))))
          end; forget(b);
          add(m*add(b(m, s, n), s=1..m), m=1..n)
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := a[n] = Module[{b}, b[m_, s_, i_] := b[m, s, i] = If[m>i || s>m, 0, If[i==1, n, If[s==1, (n-1) Sum[b[m, h, i-1], {h, 1, m}], b[m, s-1, i-1] + If[s==m, b[m-1, s-1, i-1], 0]]]]; Sum[m Sum[b[m, s, n], {s, 1, m}], {m, 1, n}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} k*A228154(n,k).
a(n) ~ (2-exp(-1)) * n^n. - Vaclav Kotesovec, Sep 10 2014
Showing 1-2 of 2 results.