A228267 Number T(n,k,r) of dissections of an n X k X r rectangular cuboid into integer-sided cubes including rotations and reflections; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.
1, 1, 1, 2, 1, 1, 3, 1, 5, 10, 1, 1, 5, 1, 11, 31, 1, 35, 167, 2098, 1, 1, 8, 1, 21, 76, 1, 93, 635, 15511, 1, 314, 3354, 185473, 4006722, 1, 1, 13, 1, 43, 210, 1, 269, 2887, 151378, 1, 1213, 22478, 3243515, 143662050, 1, 6427, 235150, 112411358
Offset: 1
Examples
The irregular triangle begins: . r 1 2 3 4 ... n,k 1,1 1 2,1 1 2,2 1 2 3,1 1 3,2 1 3 3,3 1 5 10 4,1 1 4,2 1 5 4,3 1 11 31 4,4 1 35 167 2098 5,1 1 5,2 1 8 5,3 1 21 76 5,4 1 93 635 15511 5,5 1 314 3354 185473 ... ... T(3,2,2) = 3 because there are 3 distinct dissections of a 3 X 2 X 2 rectangular cuboid into integer-sided cubes. The dissections expanded into 2 dimensions are: ._____. ._____. ._____. |_|_|_| |_|_|_| |_|_|_| |_|_|_| |_|_|_| |_|_|_| ._____. ._____. ._____. | |_| | |_| | |_| |___|_| |___|_| |___|_| ._____. ._____. ._____. |_| | |_| | |_| | |_|___| |_|___| |_|___|
Links
- Christopher Hunt Gribble, C++ program
Crossrefs
Cf. A219924.
Formula
T(1,1,r) = T(n,n,1) = 1. - R. J. Mathar, Dec 03 2017
T(2,2,r) = A000045(r+1). - R. J. Mathar, Dec 03 2017
T(3,3,r>=1) = 1, 5, 10, 31, ... with g.f. 1/(1-x-4*x^2-x^3). - R. J. Mathar, Dec 03 2017
T(4,4,r>=1) = 1, 35, 167, 2098, 15511, 151378, 1272179, 11574563, 100928230, 900224006, ... with TBD rational g.f. - R. J. Mathar, Dec 03 2017
T(n,n,2) = A063443(n). - R. J. Mathar, Dec 03 2017
Extensions
20 more terms from R. J. Mathar, Dec 03 2017
Comments