cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228267 Number T(n,k,r) of dissections of an n X k X r rectangular cuboid into integer-sided cubes including rotations and reflections; irregular triangle T(n,k,r), n >= k >= r >= 1 read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 5, 10, 1, 1, 5, 1, 11, 31, 1, 35, 167, 2098, 1, 1, 8, 1, 21, 76, 1, 93, 635, 15511, 1, 314, 3354, 185473, 4006722, 1, 1, 13, 1, 43, 210, 1, 269, 2887, 151378, 1, 1213, 22478, 3243515, 143662050, 1, 6427, 235150, 112411358
Offset: 1

Views

Author

Keywords

Comments

The main diagonal T(n,n,n) is 1, 2, 10, 2098, 4006722, .... - R. J. Mathar and Rob Pratt, Nov 27 2017

Examples

			The irregular triangle begins:
.   r 1      2      3      4 ...
n,k
1,1   1
2,1   1
2,2   1      2
3,1   1
3,2   1      3
3,3   1      5     10
4,1   1
4,2   1      5
4,3   1     11     31
4,4   1     35    167   2098
5,1   1
5,2   1      8
5,3   1     21     76
5,4   1     93    635  15511
5,5   1    314   3354 185473 ...
...
T(3,2,2) = 3 because there are 3 distinct dissections of a 3 X 2 X 2 rectangular cuboid into integer-sided cubes. The dissections expanded into 2 dimensions are:
  ._____.    ._____.    ._____.
  |_|_|_|    |_|_|_|    |_|_|_|
  |_|_|_|    |_|_|_|    |_|_|_|
  ._____.    ._____.    ._____.
  |   |_|    |   |_|    |   |_|
  |___|_|    |___|_|    |___|_|
  ._____.    ._____.    ._____.
  |_|   |    |_|   |    |_|   |
  |_|___|    |_|___|    |_|___|
		

Crossrefs

Cf. A219924.

Formula

T(1,1,r) = T(n,n,1) = 1. - R. J. Mathar, Dec 03 2017
T(2,2,r) = A000045(r+1). - R. J. Mathar, Dec 03 2017
T(3,3,r>=1) = 1, 5, 10, 31, ... with g.f. 1/(1-x-4*x^2-x^3). - R. J. Mathar, Dec 03 2017
T(4,4,r>=1) = 1, 35, 167, 2098, 15511, 151378, 1272179, 11574563, 100928230, 900224006, ... with TBD rational g.f. - R. J. Mathar, Dec 03 2017
T(n,n,2) = A063443(n). - R. J. Mathar, Dec 03 2017

Extensions

20 more terms from R. J. Mathar, Dec 03 2017