cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228274 a(n) = Sum_{d|n, n/d odd} n * d.

Original entry on oeis.org

1, 4, 12, 16, 30, 48, 56, 64, 117, 120, 132, 192, 182, 224, 360, 256, 306, 468, 380, 480, 672, 528, 552, 768, 775, 728, 1080, 896, 870, 1440, 992, 1024, 1584, 1224, 1680, 1872, 1406, 1520, 2184, 1920, 1722, 2688, 1892, 2112, 3510, 2208, 2256, 3072, 2793, 3100
Offset: 1

Views

Author

Michael Somos, Aug 19 2013

Keywords

Examples

			G.f. = x + 4*x^2 + 12*x^3 + 16*x^4 + 30*x^5 + 48*x^6 + 56*x^7 + 64*x^8 + ...
a(6) = 48 = 6 * (2 + 6). a(9) = 117 = 9 * (1 + 3 + 9). a(10) = 120 = 10 * (2 + 10).
		

Crossrefs

Programs

  • Mathematica
    A228274[n_] := If[ n < 1, 0, n Sum[ d Mod[n / d, 2], {d, Divisors @ n}]]; Table[A228274[n], {n, 50}]
  • PARI
    {a(n) = if( n<1, 0, n * sumdiv(n, d, d * (n/d % 2)))};

Formula

Multiplicative with a(2^e) = 4^e, a(p^e) = p^e * (p^(e+1) - 1) / (p - 1) if p>2.
G.f.: Sum_{k>0} k^2 * (x^k + x^(3*k)) / (1 - x^(2*k))^2. [see Basoco (1943) bottom page 305]
G.f.: Sum_{k>0} k^2 * (3 - (-1)^k)/4 * x^k / (1 - x^k)^2.
G.f.: Sum_{k>0 odd} k * (x^k + x^(2*k)) / (1 - x^k)^3.
a(n) = n * A002131(n). a(2*n) = 4 * a(n).
a(n) = A007331(n) - 4 * Sum_{k>0} A002131(k) * A002131(n-k). [see Basoco (1943) page 305 equation (9)]
Sum_{k=1..n} a(k) ~ c * n^3, where c = Pi^2/24 = 0.411233... (A222171). - Amiram Eldar, Nov 30 2022