cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A228290 a(n) = n^6 + n^5 + n^4 + n^3 + n^2 + n.

Original entry on oeis.org

0, 6, 126, 1092, 5460, 19530, 55986, 137256, 299592, 597870, 1111110, 1948716, 3257436, 5229042, 8108730, 12204240, 17895696, 25646166, 36012942, 49659540, 67368420, 90054426, 118778946, 154764792, 199411800, 254313150, 321272406, 402321276, 499738092
Offset: 0

Views

Author

Alois P. Heinz, Aug 19 2013

Keywords

Crossrefs

Column k=6 of A228275.

Programs

  • Maple
    a:= n-> (1+(1+(1+(1+(1+n)*n)*n)*n)*n)*n:
    seq(a(n), n=0..30);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 6*n,
          (n+1)*(n^2+n+1)*a(n-1)/((n-1)*(n^2-3*n+3)))
        end:
    seq(a(n), n=0..30);
    # third Maple program:
    a:= n-> `if`(n=1, 6, (n^7-n)/(n-1)):
    seq(a(n), n=0..30);
  • PARI
    a(n) = n^6 + n^5 + n^4 + n^3 + n^2 + n; \\ Joerg Arndt, Sep 03 2013
  • R
    a <- c(0, 6, 126, 1092, 5460, 19530, 55986)
    for(n in (length(a)+1):30) a[n] <- 7*a[n-1] -21*a[n-2] +35*a[n-3] -35*a[n-4] +21*a[n-5] -7*a[n-6] +a[n-7]
    a
    [Yosu Yurramendi, Sep 03 2013]
    

Formula

G.f.: -6*x*(7*x^4+42*x^3+56*x^2+14*x+1)/(x-1)^7.
a(n) = (n+1)*(n^2+n+1)*a(n-1)/((n-1)*(n^2-3*n+3)) for n>1.
a(1) = 6, else a(n) = (n^7-n)/(n-1).
a(n) = 6*A059721(n) = n*(n+1)*(1+n+n^2)*(1-n+n^2). - R. J. Mathar, Aug 21 2013
a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7) for n>6, a(0)=0, a(1)=6, a(2)=126, a(3)=1092, a(4)=5460, a(5)=19530, a(6)=55986. - Yosu Yurramendi, Sep 03 2013